Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649199

RESUMEN

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.


Asunto(s)
Melanoma Experimental/inmunología , Células Supresoras de Origen Mieloide/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas de Neoplasias/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
2.
Rheumatology (Oxford) ; 62(10): 3469-3479, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36802235

RESUMEN

OBJECTIVE: Trained immunity (TI) is a de facto memory program of innate immune cells, characterized by immunometabolic and epigenetic changes sustaining enhanced production of cytokines. TI evolved as a protective mechanism against infections; however, inappropriate activation can cause detrimental inflammation and might be implicated in the pathogenesis of chronic inflammatory diseases. In this study, we investigated the role of TI in the pathogenesis of giant cell arteritis (GCA), a large-vessel vasculitis characterized by aberrant macrophage activation and excess cytokine production. METHODS: Monocytes from GCA patients and from age- and sex-matched healthy donors were subjected to polyfunctional studies, including cytokine production assays at baseline and following stimulation, intracellular metabolomics, chromatin immunoprecipitation-qPCR, and combined ATAC/RNA sequencing. Immunometabolic activation (i.e. glycolysis) was assessed in inflamed vessels of GCA patients with FDG-PET and immunohistochemistry (IHC), and the role of this pathway in sustaining cytokine production was confirmed with selective pharmacologic inhibition in GCA monocytes. RESULTS: GCA monocytes exhibited hallmark molecular features of TI. Specifically, these included enhanced IL-6 production upon stimulation, typical immunometabolic changes (e.g. increased glycolysis and glutaminolysis) and epigenetic changes promoting enhanced transcription of genes governing pro-inflammatory activation. Immunometabolic changes of TI (i.e. glycolysis) were a feature of myelomonocytic cells in GCA lesions and were required for enhanced cytokine production. CONCLUSIONS: Myelomonocytic cells in GCA activate TI programs sustaining enhanced inflammatory activation with excess cytokine production.


Asunto(s)
Arteritis de Células Gigantes , Humanos , Arteritis de Células Gigantes/patología , Monocitos/metabolismo , Inmunidad Entrenada , Inflamación , Citocinas
3.
Blood ; 138(17): 1554-1569, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34077954

RESUMEN

Trained immunity (TI) is a proinflammatory program induced in monocyte/macrophages upon sensing of specific pathogens and is characterized by immunometabolic and epigenetic changes that enhance cytokine production. Maladaptive activation of TI (ie, in the absence of infection) may result in detrimental inflammation and development of disease; however, the exact role and extent of inappropriate activation of TI in the pathogenesis of human diseases is undetermined. In this study, we uncovered the oncogene-induced, maladaptive induction of TI in the pathogenesis of a human inflammatory myeloid neoplasm (Erdheim-Chester disease, [ECD]), characterized by the BRAFV600E oncogenic mutation in monocyte/macrophages and excess cytokine production. Mechanistically, myeloid cells expressing BRAFV600E exhibit all molecular features of TI: activation of the AKT/mammalian target of rapamycin signaling axis; increased glycolysis, glutaminolysis, and cholesterol synthesis; epigenetic changes on promoters of genes encoding cytokines; and enhanced cytokine production leading to hyperinflammatory responses. In patients with ECD, effective therapeutic strategies combat this maladaptive TI phenotype; in addition, pharmacologic inhibition of immunometabolic changes underlying TI (ie, glycolysis) effectively dampens cytokine production by myeloid cells. This study revealed the deleterious potential of inappropriate activation of TI in the pathogenesis of human inflammatory myeloid neoplasms and the opportunity for inhibition of TI in conditions characterized by maladaptive myeloid-driven inflammation.


Asunto(s)
Enfermedad de Erdheim-Chester/genética , Inflamación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Células Cultivadas , Epigénesis Genética , Enfermedad de Erdheim-Chester/inmunología , Enfermedad de Erdheim-Chester/patología , Humanos , Inmunidad , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Oncogenes , Mutación Puntual , Proteínas Proto-Oncogénicas B-raf/inmunología
4.
Proc Natl Acad Sci U S A ; 117(50): 32145-32154, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257576

RESUMEN

Numerous studies demonstrate that neuroinflammation is a key player in the progression of Alzheimer's disease (AD). Interleukin (IL)-1ß is a main inducer of inflammation and therefore a prime target for therapeutic options. The inactive IL-1ß precursor requires processing by the the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome into a mature and active form. Studies have shown that IL-1ß is up-regulated in brains of patients with AD, and that genetic inactivation of the NLRP3 inflammasome improves behavioral tests and synaptic plasticity phenotypes in a murine model of the disease. In the present study, we analyzed the effect of pharmacological inhibition of the NLRP3 inflammasome using dapansutrile (OLT1177), an oral NLRP3-specific inhibitor that is safe in humans. Six-month-old WT and APP/PS1 mice were fed with standard mouse chow or OLT1177-enriched chow for 3 mo. The Morris water maze test revealed an impaired learning and memory ability of 9-mo-old APP/PS1 mice (P = 0.001), which was completely rescued by OLT1177 fed to mice (P = 0.008 to untreated APP/PS1). Furthermore, our findings revealed that 3 mo of OLT1177 diet can rescue synaptic plasticity in this mouse model of AD (P = 0.007 to untreated APP/PS1). In addition, microglia were less activated (P = 0.07) and the number of plaques was reduced in the cortex (P = 0.03) following NLRP3 inhibition with OLT1177 administration. We also observed an OLT1177 dose-dependent normalization of plasma metabolic markers of AD to those of WT mice. This study suggests the therapeutic potential of treating neuroinflammation with an oral inhibitor of the NLRP3 inflammasome.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Inflamasomas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Nitrilos/farmacología , Administración Oral , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Precursor de Proteína beta-Amiloide/genética , Animales , Técnicas de Observación Conductual , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Humanos , Inflamasomas/inmunología , Masculino , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/inmunología , Nitrilos/uso terapéutico , Presenilina-1/genética , Memoria Espacial/efectos de los fármacos
5.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903299

RESUMEN

Cancer therapies use different compounds of synthetic and natural origin. However, despite some positive results, relapses are common, as standard chemotherapy regimens are not fully capable of completely eradicating cancer stem cells. While vinblastine is a common chemotherapeutic agent in the treatment of blood cancers, the development of vinblastine resistance is often observed. Here, we performed cell biology and metabolomics studies to investigate the mechanisms of vinblastine resistance in P3X63Ag8.653 murine myeloma cells. Treatment with low doses of vinblastine in cell media led to the selection of vinblastine-resistant cells and the acquisition of such resistance in previously untreated, murine myeloma cells in culture. To determine the mechanistic basis of this observation, we performed metabolomic analyses of resistant cells and resistant drug-induced cells in a steady state, or incubation with stable isotope-labeled tracers, namely, 13C 15N-amino acids. Taken together, these results indicate that altered amino acid uptake and metabolism could contribute to the acquisition of vinblastine resistance in blood cancer cells. These results will be useful for further research on human cell models.


Asunto(s)
Mieloma Múltiple , Vinblastina , Ratones , Humanos , Animales , Vinblastina/farmacología , Resistencia a Antineoplásicos , Células Tumorales Cultivadas , Recurrencia Local de Neoplasia
6.
Haematologica ; 107(1): 112-125, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33730845

RESUMEN

Blood donor genetics and lifestyle affect the quality of red blood cell (RBC) storage. Heterozygotes for beta thalassemia (bThal+) constitute a non-negligible proportion of blood donors in the Mediterranean and other geographical areas. The unique hematological profile of bThal+ could affect the capacity of enduring storage stress, however, the storability of bThal+ RBC is largely unknown. In this study, RBC from 18 bThal+ donors were stored in the cold and profiled for primary (hemolysis) and secondary (phosphatidylserine exposure, potassium leakage, oxidative stress) quality measures, and metabolomics, versus sex- and age-matched controls. The bThal+ units exhibited better levels of storage hemolysis and susceptibility to lysis following osmotic, oxidative and mechanical insults. Moreover, bThal+ RBC had a lower percentage of surface removal signaling, reactive oxygen species and oxidative defects to membrane components at late stages of storage. Lower potassium accumulation and higher uratedependent antioxidant capacity were noted in the bThal+ supernatant. Full metabolomics analyses revealed alterations in purine and arginine pathways at baseline, along with activation of the pentose phosphate pathway and glycolysis upstream to pyruvate kinase in bThal+ RBC. Upon storage, substantial changes were observed in arginine, purine and vitamin B6 metabolism, as well as in the hexosamine pathway. A high degree of glutamate generation in bThal+ RBC was accompanied by low levels of purine oxidation products (IMP, hypoxanthine, allantoin). The bThal mutations impact the metabolism and the susceptibility to hemolysis of stored RBC, suggesting good post-transfusion recovery. However, hemoglobin increment and other clinical outcomes of bThal+ RBC transfusion deserve elucidation by future studies.


Asunto(s)
Talasemia beta , Conservación de la Sangre , Transfusión de Eritrocitos , Eritrocitos/metabolismo , Hemólisis , Humanos , Talasemia beta/genética , Talasemia beta/metabolismo
7.
J Proteome Res ; 20(5): 2251-2265, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780259

RESUMEN

Platelet concentrates are currently stored at room temperature (RP) under constant agitation for up to 5-7 days depending on national regulations. However, platelet quality deteriorates during storage and room-temperature storage also increases the risk of bacterial growth. Previous studies have shown that cold-stored platelets (CPs) have higher hemostatic functions and can be stored for up to 3 weeks. While these studies have compared the metabolic phenotypes of CPs and RPs, they have neither compared the impact of storage temperature and cold agitation (CPAs) on platelet function nor identified metabolic correlates to such parameters. In vitro analysis showed that CPAs and CPs had reduced count, faster CD62P expression, and increased lactadherin binding. Furthermore, CPAs and CPs had higher maximal aggregation and a reduced aggregation lag phase compared to RPs. Metabolomic analysis revealed that CPAs and CPs exhibited lower oxidative stress shown by preserved glutathione and pentose phosphate pools. CPAs and CPs also had reduced markers of beta-oxidation and amino acid catabolism, demonstrating reduced needs for energy. Agitation did not significantly impact in vitro function or metabolomic parameters of cold-stored platelets. Correlation of in vitro and metabolomic results highlighted important metabolites that may contribute to stored platelet functions. Raw data are publicly available through Metabolomics Workbench with the study identifier ST001644.


Asunto(s)
Plaquetas , Conservación de la Sangre , Frío , Metabolómica , Agregación Plaquetaria , Temperatura
8.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477427

RESUMEN

Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.


Asunto(s)
Eritrocitos/metabolismo , Ejercicio Físico/fisiología , Lípidos de la Membrana/sangre , Esfuerzo Físico/genética , Adulto , Recuento de Eritrocitos , Deformación Eritrocítica/genética , Humanos , Lipidómica , Masculino , Metabolómica , Consumo de Oxígeno , Esfuerzo Físico/fisiología
9.
J Proteome Res ; 19(11): 4455-4469, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33103907

RESUMEN

The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, or mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading and metabolic rewiring toward the hexose monophosphate shunt, RBCs from COVID-19 patients may be less capable of responding to environmental variations in hemoglobin oxygen saturation/oxidant stress when traveling from the lungs to peripheral capillaries and vice versa.


Asunto(s)
Infecciones por Coronavirus , Eritrocitos , Lípidos de la Membrana , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Eritrocitos/química , Eritrocitos/citología , Eritrocitos/patología , Humanos , Lipidómica , Lípidos de la Membrana/análisis , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Metaboloma/fisiología , Modelos Moleculares , Neumonía Viral/sangre , Neumonía Viral/patología , Neumonía Viral/fisiopatología , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , SARS-CoV-2
10.
Haematologica ; 105(8): 2174-2186, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31699790

RESUMEN

Macaques are emerging as a critical animal model in transfusion medicine, because of their evolutionary similarity to humans and perceived utility in discovery and translational science. However, little is known about the metabolism of Rhesus macaque red blood cells (RBC) and how this compares to human RBC metabolism under standard blood banking conditions. Metabolomic and lipidomic analyses, and tracing experiments with [1,2,3-13C3]glucose, were performed using fresh and stored RBC (sampled weekly until storage day 42) obtained from Rhesus macaques (n=20) and healthy human volunteers (n=21). These results were further validated with targeted quantification against stable isotope-labeled internal standards. Metabolomic analyses demonstrated inter-species differences in RBC metabolism independent of refrigerated storage. Although similar trends were observed throughout storage for several metabolic pathways, species- and sex-specific differences were also observed. The most notable differences were in glutathione and sulfur metabolites, purine and lipid oxidation metabolites, acylcarnitines, fatty acyl composition of several classes of lipids (including phosphatidylserines), glyoxylate pathway intermediates, and arginine and carboxylic acid metabolites. Species-specific dietary and environmental compounds were also detected. Overall, the results suggest an increased basal and refrigerator-storage-induced propensity for oxidant stress and lipid remodeling in Rhesus macaque RBC cells, as compared to human red cells. The overlap between Rhesus macaque and human RBC metabolic phenotypes suggests the potential utility of a translational model for simple RBC transfusions, although inter-species storage-dependent differences need to be considered when modeling complex disease states, such as transfusion in trauma/hemorrhagic shock models.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Animales , Bancos de Sangre , Transfusión de Eritrocitos , Femenino , Humanos , Macaca mulatta , Masculino
11.
Transfusion ; 60(4): 786-798, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32104927

RESUMEN

BACKGROUND: Blood transfusion is a lifesaving intervention for millions of recipients worldwide every year. Storing blood makes this possible but also promotes a series of alterations to the metabolism of the stored erythrocyte. It is unclear whether the metabolic storage lesion is correlated with clinically relevant outcomes and whether strategies aimed at improving the metabolic quality of stored units, such as hypoxic storage, ultimately improve performance in the transfused recipient. STUDY DESIGN AND METHODS: Twelve healthy donor volunteers were recruited in a two-arm cross-sectional study, in which each subject donated 2 units to be stored under standard (normoxic) or hypoxic conditions (Hemanext technology). End-of-storage measurements of hemolysis and autologous posttransfusion recovery (PTR) were correlated to metabolomics measurements at Days 0, 21, and 42. RESULTS: Hypoxic red blood cells (RBCs) showed superior PTR and comparable hemolysis to donor-paired standard units. Hypoxic storage improved energy and redox metabolism (glycolysis and 2,3-diphosphoglycerate), improved glutathione and methionine homeostasis, decreased purine oxidation and membrane lipid remodeling (free fatty acid levels, unsaturation and hydroxylation, acyl-carnitines). Intra- and extracellular metabolites in these pathways (including some dietary purines) showed significant correlations with PTR and hemolysis, though the degree of correlation was influenced by sulfur dioxide (SO2 ) levels. CONCLUSION: Hypoxic storage improves energy and redox metabolism of stored RBCs, which results in improved posttransfusion recoveries in healthy autologous recipients-a Food and Drug Administration gold standard of stored blood quality. In addition, we identified candidate metabolic predictors of PTR for RBCs stored under standard and hypoxic conditions.


Asunto(s)
Conservación de la Sangre/métodos , Eritrocitos/metabolismo , Hipoxia , Adulto , Donantes de Sangre , Conservación de la Sangre/normas , Transfusión Sanguínea/normas , Estudios Transversales , Femenino , Voluntarios Sanos , Hemólisis , Humanos , Masculino , Recuperación de la Función , Trasplante Autólogo
12.
Transfusion ; 60 Suppl 3: S96-S106, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31880330

RESUMEN

BACKGROUND: Conventional platelet (PLT) storage at room temperature under continuous agitation results in a limited shelf life (5 days) and an increased risk of bacterial contamination. However, both of these aspects can be ameliorated by cold storage. Preliminary work has suggested that PLTs can be cold stored for up to 3 weeks, while preserving their metabolic activity longer than in PLTs stored at room temperature. As such, in the present study, we hypothesized that the metabolic phenotypes of PLTs stored at 4°C for 3 weeks could be comparable to that of room temperature-stored PLTs at 22°C for 5 days. STUDY DESIGN AND METHODS: Metabolomics analyses were performed on nine apheresis PLT concentrates stored either at room temperature (22°C) for 5 days or refrigerated conditions (4°C) for up to 3 weeks. RESULTS: Refrigeration did not impact the rate of decline in glutamine or the intracellular levels of Krebs cycle metabolites upstream to fumarate and malate. It did, however, decrease oxidant stress (to glutathione and purines) and slowed down the activation of the pentose phosphate pathway, glycolysis, and fatty acid metabolism (acyl-carnitines). CONCLUSION: The overall metabolic phenotypes of 4°C PLTs at Storage Day 10 are comparable to PLTs stored at 22°C at the end of their 5-day shelf life, while additional changes in glycolysis, purine, and fatty acid metabolism are noted by Day 21.


Asunto(s)
Plaquetas/metabolismo , Metaboloma , Metabolómica/métodos , Arginina/metabolismo , Plaquetas/citología , Cromatografía Líquida de Alta Presión , Ciclo del Ácido Cítrico , Frío , Humanos , Espectrometría de Masas , Plaquetoferesis
13.
Transfusion ; 60(6): 1160-1174, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32385854

RESUMEN

BACKGROUND: Cigarette smoking is a frequent habit across blood donors (approx. 13% of the donor population), that could compound biologic factors and exacerbate oxidant stress to stored red blood cells (RBCs). STUDY DESIGN AND METHODS: As part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, a total of 599 samples were sterilely drawn from RBC units stored under blood bank conditions at Storage Days 10, 23, and 42 days, before testing for hemolysis parameters and metabolomics. Quantitative measurements of nicotine and its metabolites cotinine and cotinine oxide were performed against deuterium-labeled internal standards. RESULTS: Donors whose blood cotinine levels exceeded 10 ng/mL (14% of the tested donors) were characterized by higher levels of early glycolytic intermediates, pentose phosphate pathway metabolites, and pyruvate-to-lactate ratios, all markers of increased basal oxidant stress. Consistently, increased glutathionylation of oxidized triose sugars and lipid aldehydes was observed in RBCs donated by nicotine-exposed donors, which were also characterized by increased fatty acid desaturation, purine salvage, and methionine oxidation and consumption via pathways involved in oxidative stress-triggered protein damage-repair mechanisms. CONCLUSION: RBCs from donors with high levels of nicotine exposure are characterized by increases in basal oxidant stress and decreases in osmotic hemolysis. These findings indicate the need for future clinical studies aimed at addressing the impact of smoking and other sources of nicotine (e.g., nicotine patches, snuff, vaping, secondhand tobacco smoke) on RBC storage quality and transfusion efficacy.


Asunto(s)
Donantes de Sangre , Conservación de la Sangre , Fumar Cigarrillos , Eritrocitos/metabolismo , Nicotina/efectos adversos , Estrés Oxidativo , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/sangre , Fumar Cigarrillos/patología , Eritrocitos/patología , Femenino , Humanos , Masculino
14.
Transfusion ; 60(6): 1212-1226, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339326

RESUMEN

BACKGROUND: Taurine is an antioxidant that is abundant in some common energy drinks. Here we hypothesized that the antioxidant activity of taurine in red blood cells (RBCs) could be leveraged to counteract storage-induced oxidant stress. STUDY DESIGN AND METHODS: Metabolomics analyses were performed on plasma and RBCs from healthy volunteers (n = 4) at baseline and after consumption of a whole can of a common, taurine-rich (1000 mg/serving) energy drink. Reductionistic studies were also performed by incubating human RBCs with taurine ex vivo (unlabeled or 13 C15 N-labeled) at increasing doses (0, 100, 500, and 1000 µmol/L) at 37°C for up to 16 hours, with and without oxidant stress challenge with hydrogen peroxide (0.1% or 0.5%). Finally, we stored human and murine RBCs under blood bank conditions in additives supplemented with 500 µmol/L taurine, before metabolomics and posttransfusion recovery studies. RESULTS: Consumption of energy drinks increased plasma and RBC levels of taurine, which was paralleled by increases in glycolysis and glutathione (GSH) metabolism in the RBC. These observations were recapitulated ex vivo after incubation with taurine and hydrogen peroxide. Taurine levels in the RBCs from the REDS-III RBC-Omics donor biobank were directly proportional to the total levels of GSH and glutathionylated metabolites and inversely correlated to oxidative hemolysis measurements. Storage of human RBCs in the presence of taurine improved energy and redox markers of storage quality and increased posttransfusion recoveries in FVB mice. CONCLUSION: Taurine modulates RBC antioxidant metabolism in vivo and ex vivo, an observation of potential relevance to transfusion medicine.


Asunto(s)
Donantes de Sangre , Conservación de la Sangre , Eritrocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Taurina/farmacocinética , Animales , Humanos , Metabolómica , Ratones , Taurina/farmacología
15.
J Proteome Res ; 18(4): 1827-1841, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793910

RESUMEN

Arctic ground squirrels provide a unique model to investigate metabolic responses to hibernation in mammals. During winter months these rodents are exposed to severe hypothermia, prolonged fasting, and hypoxemia. In the light of their role in oxygen transport/off-loading and owing to the absence of nuclei and organelles (and thus de novo protein synthesis capacity), mature red blood cells have evolved metabolic programs to counteract physiological or pathological hypoxemia. However, red blood cell metabolism in hibernation has not yet been investigated. Here we employed targeted and untargeted metabolomics approaches to investigate erythrocyte metabolism during entrance to torpor to arousal, with a high resolution of the intermediate time points. We report that torpor and arousal promote metabolism through glycolysis and pentose phosphate pathway, respectively, consistent with previous models of oxygen-dependent metabolic modulation in mature erythrocytes. Erythrocytes from hibernating squirrels showed up to 100-fold lower levels of biomarkers of reperfusion injury, such as the pro-inflammatory dicarboxylate succinate. Altered tryptophan metabolism during torpor was here correlated to the accumulation of potentially neurotoxic catabolites kynurenine, quinolinate, and picolinate. Arousal was accompanied by alterations of sulfur metabolism, including sudden spikes in a metabolite putatively identified as thiorphan (level 1 confidence)-a potent inhibitor of several metalloproteases that play a crucial role in nociception and inflammatory complication to reperfusion secondary to ischemia or hemorrhage. Preliminary studies in rats showed that intravenous injection of thiorphan prior to resuscitation mitigates metabolic and cytokine markers of reperfusion injury, etiological contributors to inflammatory complications after shock.


Asunto(s)
Nivel de Alerta/fisiología , Eritrocitos , Metaboloma/fisiología , Sciuridae , Letargo/fisiología , Animales , Eritrocitos/metabolismo , Eritrocitos/fisiología , Hibernación/fisiología , Sciuridae/sangre , Sciuridae/metabolismo , Sciuridae/fisiología , Azufre/metabolismo , Triptófano/metabolismo
16.
Transfusion ; 58(12): 2978-2991, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312994

RESUMEN

BACKGROUND: Being devoid of de novo protein synthesis capacity, red blood cells (RBCs) have evolved to recycle oxidatively damaged proteins via mechanisms that involve methylation of dehydrated and deamidated aspartate and asparagine residues. Here we hypothesize that such mechanisms are relevant to routine storage in the blood bank. STUDY DESIGN AND METHODS: Within the framework of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, packed RBC units (n = 599) were stored under blood bank conditions for 10, 23, and 42 days and profiled for oxidative hemolysis and time-dependent metabolic dysregulation of the trans-sulfuration pathway. RESULTS: In these units, methionine consumption positively correlated with storage age and oxidative hemolysis. Mechanistic studies show that this phenomenon is favored by oxidative stress or hyperoxic storage (sulfur dioxide >95%), and prevented by hypoxia or methyltransferase inhibition. Through a combination of proteomics approaches and 13 C-methionine tracing, we observed oxidation-induced increases in both Asn deamidation to Asp and formation of methyl-Asp on key structural proteins and enzymes, including Band 3, hemoglobin, ankyrin, 4.1, spectrin beta, aldolase, glyceraldehyde 3-phosphate dehydrogenase, biphosphoglycerate mutase, lactate dehydrogenase and catalase. Methylated regions tended to map proximal to the active site (e.g., N316 of glyceraldehyde 3-phosphate dehydrogenase) and/or residues interacting with the N-terminal cytosolic domain of Band 3. CONCLUSION: While methylation of basic amino acid residues serves as an epigenetic modification in nucleated cells, protein methylation at carboxylate side chains and deamidated asparagines is a nonepigenetic posttranslational sensor of oxidative stress and refrigerated storage in anucleated human RBCs.


Asunto(s)
Asparagina/metabolismo , Ácido Aspártico/metabolismo , Bancos de Sangre , Conservación de la Sangre , Eritrocitos/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Eritrocitos/citología , Humanos , Metilación , Proteómica , Factores de Tiempo
18.
EMBO Mol Med ; 16(6): 1379-1403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684863

RESUMEN

Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.


Asunto(s)
Aspartatoamoníaco Ligasa , Modelos Animales de Enfermedad , Enfermedades Renales Poliquísticas , Animales , Humanos , Ratones , Aspartatoamoníaco Ligasa/metabolismo , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/genética
19.
Sports Med ; 53(8): 1651-1665, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148487

RESUMEN

BACKGROUND AND OBJECTIVE: Metabolomics studies of recreational and elite athletes have been so far limited to venipuncture-dependent blood sample collection in the setting of controlled training and medical facilities. However, limited to no information is currently available to determine if findings in laboratory settings are translatable to a real-world scenario in elite competitions. The goal of this study was to define molecular signatures of exertion under controlled exercise conditions and use these signatures as a framework for assessing cycling performance in a World Tour competition. METHODS: To characterize molecular profiles of exertion in elite athletes during cycling, we performed metabolomics analyses on blood isolated from 28 international-level, elite, World Tour professional male athletes from a Union Cycliste Internationale World Team taken before and after a graded exercise test to volitional exhaustion and before and after a long aerobic training session. Moreover, established signatures were then used to characterize the metabolic physiology of five of these cyclists who were selected to represent the same Union Cycliste Internationale World Team during a seven-stage elite World Tour race. RESULTS: Using dried blood spot collection to circumvent logistical hurdles associated with field sampling, these studies defined metabolite signatures and fold change ranges of anaerobic or aerobic exertion in elite cyclists, respectively. Blood profiles of lactate, carboxylic acids, fatty acids, and acylcarnitines differed between exercise modes. The graded exercise test elicited significant two- to three-fold accumulations in lactate and succinate, in addition to significant elevations in free fatty acids and acylcarnitines. Conversely, the long aerobic training session elicited a larger magnitude of increase in fatty acids and acylcarnitines without appreciable increases in lactate or succinate. Comparable signatures were revealed after sprinting and climbing stages, respectively, in a World Tour race. In addition, signatures of elevated fatty acid oxidation capacity correlated with competitive performance. CONCLUSIONS: Collectively, these studies provide a unique view of alterations in the blood metabolome of elite athletes during competition and at the peak of their performance capabilities. Furthermore, they demonstrate the utility of dried blood sampling for omics analysis, thereby enabling molecular monitoring of athletic performance in the field during training and competition.


Asunto(s)
Rendimiento Atlético , Humanos , Masculino , Ciclismo/fisiología , Ejercicio Físico/fisiología , Lactatos , Succinatos
20.
Cancers (Basel) ; 14(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35565240

RESUMEN

There is increasing evidence that oxidative metabolism and fatty acids play an important role in BRAF-driven tumorigenesis, yet the effect of BRAF mutation and expression on metabolism is poorly understood. We examined how BRAF mutation and expression modulates metabolite abundance. Using the non-transformed NIH3T3 cell line, we generated cells that stably overexpressed BRAF V600E or BRAF WT. We found that cells expressing BRAF V600E were enriched with immunomodulatory lipids. Further, we found a unique transcriptional signature that was exclusive to BRAF V600E expression. We also report that BRAF V600E mutation promoted accumulation of long chain polyunsaturated fatty acids (PUFAs) and rewired metabolic flux for non-Warburg behavior. This cancer promoting mutation further induced the formation of tunneling nanotube (TNT)-like protrusions in NIH3T3 cells that preferentially accumulated lipid droplets. In the plasma of melanoma patients harboring the BRAF V600E mutation, levels of lysophosphatidic acid, sphingomyelin, and long chain fatty acids were significantly increased in the cohort of patients that did not respond to BRAF inhibitor therapy. Our findings show BRAF V600 status plays an important role in regulating immunomodulatory lipid profiles and lipid trafficking, which may inform future therapy across cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA