Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochemistry ; 50(8): 1329-35, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21235228

RESUMEN

Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb's Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Endodesoxirribonucleasas/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Daño del ADN , Reparación del ADN/efectos de la radiación , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efectos de la radiación , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de la radiación , Ácido Peroxinitroso/farmacología , Tiadiazoles/química , Tiadiazoles/farmacología , Rayos Ultravioleta
2.
J Biol Chem ; 284(42): 28874-84, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19717563

RESUMEN

The secreted protein Hedgehog (Hh) plays a critical instructional role during metazoan development. In Drosophila, Hh signaling is interpreted by a set of conserved, downstream effectors that differentially localize and interact to regulate the stability and activity of the transcription factor Cubitus interruptus. Two essential models that integrate genetic, cell biological, and biochemical information have been proposed to explain how these signaling components relate to one another within the cellular context. As the molar ratios of the signaling effectors required in each of these models are quite different, quantitating the cellular ratio of pathway components could distinguish these two models. Here, we address this important question using a set of purified protein standards to perform a quantitative analysis of Drosophila cell lysates for each downstream pathway component. We determine each component's steady-state concentration within a given cell, demonstrate the molar ratio of Hh signaling effectors differs more than two orders of magnitude and that this ratio is conserved in vivo. We find that the G-protein-coupled transmembrane protein Smoothened, an activating component, is present in limiting amounts, while a negative pathway regulator, Suppressor of Fused, is present in vast molar excess. Interestingly, despite large differences in the steady-state ratio, all downstream signaling components exist in an equimolar membrane-associated complex. We use these quantitative results to re-evaluate the current models of Hh signaling and now propose a novel model of signaling that accounts for the stoichiometric differences observed between various Hh pathway components.


Asunto(s)
Proteínas Hedgehog/metabolismo , Animales , Citosol/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insectos , Cinesinas/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/química , Proteínas Represoras/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Curr Biol ; 13(22): 1998-2003, 2003 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-14614827

RESUMEN

The hedgehog (Hh) family of morphogens plays important instructional roles in the development of numerous metazoan structures. Consistent with the role Hh homologs play in cell fate determination, aberrant Hh signaling results in numerous human pathologies. Hh signal transduction is initiated when Hh binds to its receptor Patched (Ptc), activating the transmembrane protein Smoothened (Smo). Smo transmits its activation signal to a microtubule-associated Hedgehog signaling complex (HSC). At a minimum, the HSC consists of the Kinesin-related protein Costal2 (Cos2), the protein kinase Fused (Fu), and the transcription factor Cubitus interruptus (Ci). In response to HSC activation, the ratio between repressor and activator forms of Ci is altered, determining the expression levels of various Hh target genes. The steps between Smo activation and signaling to the HSC have not been described. Here, we describe a functional interaction between Smo and Cos2, which is necessary for Hh signaling. We propose that this interaction is direct and allows for activation of Ci in response to Hh. This work fills in the last major gap in our understanding of the Hh signal transduction pathway by suggesting that no intermediate signal is required to connect Smo to the HSC.


Asunto(s)
Proteínas de Drosophila , Drosophila/metabolismo , Cinesinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Animales Modificados Genéticamente , Western Blotting , Drosophila/genética , Microscopía Fluorescente , Pruebas de Precipitina , Receptor Smoothened , Técnicas del Sistema de Dos Híbridos
4.
Mol Cell Biol ; 22(5): 1555-66, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11839821

RESUMEN

The secreted protein hedgehog (Hh) plays a critical role in the developmental patterning of multiple tissues. In Drosophila melanogaster, a cytosolic multiprotein signaling complex appears necessary for Hh signaling. Genes that encode components of this Hh signaling complex (HSC) were originally identified and characterized based on their genetic interactions with hh, as well as with each other. It is only in recent years that the mechanistic functions of these components have begun to be unraveled. Here, we have investigated the relationship between two components of the HSC, the serine/threonine protein kinase Fused (Fu) and the kinesin-related protein Costal2 (Cos2). We have reconstituted a Fu/Cos2 complex in vitro and shown that Fu is able to directly associate with Cos2, forming a complex whose molecular size is similar to a previously described complex found in Drosophila cell extracts. We have also determined that the carboxyl-terminal domain of Fu is necessary and sufficient for the direct binding of Fu to Cos2. To validate the physiological relevance of this interaction, we overexpressed the carboxyl-terminal domain of Fu in wild-type flies. These flies exhibit a phenotype similar to that seen in fu mutants and consistent with an hh loss-of-function phenotype. We conclude that the carboxyl-terminal domain of Fu can function in a dominant negative manner, by preventing endogenous Fu from binding to Cos2. Thus, we provide the first evidence that Hh signaling can be compromised by targeting the HSC for disruption.


Asunto(s)
Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Hedgehog , Cinesinas/genética , Fragmentos de Péptidos/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Alas de Animales/crecimiento & desarrollo
5.
Biochem Pharmacol ; 67(5): 805-14, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15104233

RESUMEN

The Hedgehog (Hh) signal transduction pathway plays critical instructional roles during development. Activating mutations in human Hh signaling components predispose to a variety of tumor types, and have been observed in sporadic tumors occurring in a wide range of organs. Multiple insights into the regulation of Hh signaling have been achieved through studies using Drosophila melanogaster as a model organism. In Drosophila, regulation of the transcription factor Cubitus interruptus (Ci) is the ultimate target of the Hh pathway. Ci is regulated through communication of the membrane proteins Patched (Ptc) and Smoothened (Smo) to the intracellular Hedgehog Signaling Complex (HSC) in response to a graded concentration of Hh ligand. The HSC consists of the Kinesin Related Protein, Costal2 (Cos2), the serine-threonine protein kinase. Fused (Fu) and Ci. In the absence of Hh stimulation, the HSC is involved in processing of Ci to a truncated repressor protein. In response to Hh binding to Ptc, processing of Ci is blocked to allow for accumulation of full-length Ci activator protein(s). Differential concentrations of Hh ligand stimulate production of Ci transcriptional activators of varying strength, which facilitate activation of distinct subsets of target genes. The mechanism(s) by which Ptc and Smo communicate with the HSC in response to differential ligand concentrations to regulate Ci function are not yet fully elucidated. Here, we review what is known about regulation of individual Hh signaling components, concentrating on the mechanisms by which the Hh signal is propagated through Smo to the HSC.


Asunto(s)
Proteínas de Drosophila/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster , Proteínas Hedgehog , Cinesinas/metabolismo , Mamíferos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/metabolismo , Receptor Smoothened , Factores de Transcripción
6.
J Biol Chem ; 279(8): 7064-71, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14645371

RESUMEN

In Drosophila, Hedgehog (Hh) signal transduction has been shown to require a multiprotein complex (Hedgehog signaling complex (HSC)), which includes the Kinesin-related protein Costal2 (Cos2), the serine/threonine protein kinase Fused (Fu), and the transcription factor Cubitus interruptus (Ci). We present evidence that a biologically relevant fraction of the HSC is found in association with cellular membranes. We demonstrate that Cos2 is capable of tethering an exogenous protein to vesicular membranes and that Cos2 association with membranes is Hh-sensitive. In addition, we demonstrate that Cos2 associates with membranes in cells that lack the transmembrane protein Smoothened (Smo) through a domain of Cos2 distinct from its recently characterized Smo binding domain. We suggest that an Hh-regulated membrane binding activity of Cos2 is part of the mechanism by which Cos2 contributes to Hh signaling. We propose a model in which there are two distinct HSCs with discrete subcellular localizations and activities: one is endosome-associated and facilitates production of a repressor form of Ci (HSC-R), and one is Smo-associated and promotes Ci activation (HSC-A). In response to Hh and through interaction with Cos2, Smo mediates both inhibition of the endosome-associated HSC-R and activation of HSC-A at the plasma membrane.


Asunto(s)
Proteínas de Drosophila/química , Cinesinas/química , Cinesinas/fisiología , Animales , Línea Celular , Membrana Celular/metabolismo , Centrifugación por Gradiente de Densidad , ADN/química , Proteínas de Unión al ADN/fisiología , Relación Dosis-Respuesta a Droga , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Electroforesis en Gel de Poliacrilamida , Endosomas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Proteínas Hedgehog , Immunoblotting , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Unión Proteica , Proteínas Serina-Treonina Quinasas/fisiología , Estructura Terciaria de Proteína , ARN Bicatenario/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Receptor Smoothened , Factores de Tiempo , Factores de Transcripción/metabolismo , Activación Transcripcional , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA