Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(26): 267203, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28707922

RESUMEN

Magnetic Skyrmions can be considered as localized vortexlike spin textures which are topologically protected in continuous systems. Because of their stability, their small size, and the possibility to move them by low electric currents, they are promising candidates for spintronic devices. Without changing the topological charge, it is possible to create Skyrmion-anti-Skyrmion pairs. We derive a Skyrmion equation of motion which reveals how spin-polarized charge currents create Skyrmion-anti-Skyrmion pairs. It allows us to identify general prerequisites for the pair creation process. We corroborate these general principles by numerical simulations. On a lattice, where the concept of topological protection has to be replaced by that of a finite energy barrier, the anti-Skyrmion partner of the pairs is annihilated and only the Skyrmion survives. This eventually changes the total Skyrmion number and yields a new way of creating and controlling Skyrmions.

2.
Sci Rep ; 10(1): 20400, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230140

RESUMEN

Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly magnetized state have multiple applications in logic devices, sensors, and as bits of information. One of the most promising concepts for applying these bits is the racetrack architecture controlled by electric currents or magnetic driving fields. In state-of-the-art racetracks, these fields or currents are applied to the whole circuit. Here, we employ micromagnetic and atomistic simulations to establish a concept for racetrack memories free of global driving forces. Surprisingly, we realize that mixed sequences of topologically distinct objects can be created and propagated over far distances exclusively by local rotation of magnetization at the sample boundaries. We reveal the dependence between chirality of the rotation and the direction of propagation and define the phase space where the proposed procedure can be realized. The advantages of this approach are the exclusion of high current and field densities as well as its compatibility with an energy-efficient three-dimensional design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA