Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 142(10): 1767-76, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25968312

RESUMEN

Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects. To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4. Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers. Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 'Knypek' is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes. Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos. In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers. Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes. This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.


Asunto(s)
Glipicanos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Glipicanos/genética , Proteoglicanos de Heparán Sulfato/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
2.
Circ Res ; 110(4): 578-87, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22247485

RESUMEN

RATIONALE: The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered. OBJECTIVE: To identify when and where Bmp signaling regulates cardiogenic differentiation. METHODS AND RESULTS: Here we have observed that in zebrafish embryos, Bmp signaling is active in cardiac progenitor cells prior to their differentiation into cardiomyocytes. Bmp signaling is continuously required during somitogenesis within the anterior lateral plate mesoderm to induce myocardial differentiation. Surprisingly, Bmp signaling is actively repressed in differentiating myocardial cells. We identified the inhibitory Smad6a, which is expressed in the cardiac tissue, to be required to inhibit Bmp signaling and thereby promote expansion of the ventricular myocardium. CONCLUSION: Bmp signaling exerts opposing effects on myocardial differentiation in the embryo by promoting as well as inhibiting cardiac growth.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Corazón/embriología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Mutación , Proteína smad6/metabolismo , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Dev Cell ; 13(2): 226-41, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17681134

RESUMEN

We found that the secreted serine protease xHtrA1, expressed in the early embryo and transcriptionally activated by FGF signals, promotes posterior development in mRNA-injected Xenopus embryos. xHtrA1 mRNA led to the induction of secondary tail-like structures, expansion of mesoderm, and formation of ectopic neurons in an FGF-dependent manner. An antisense morpholino oligonucleotide or a neutralizing antibody against xHtrA1 had the opposite effects. xHtrA1 activates FGF/ERK signaling and the transcription of FGF genes. We show that Xenopus Biglycan, Syndecan-4, and Glypican-4 are proteolytic targets of xHtrA1 and that heparan sulfate and dermatan sulfate trigger posteriorization, mesoderm induction, and neuronal differentiation via the FGF signaling pathway. The results are consistent with a mechanism by which xHtrA1, through cleaving proteoglycans, releases cell-surface-bound FGF ligands and stimulates long-range FGF signaling.


Asunto(s)
Embrión no Mamífero/enzimología , Factores de Crecimiento de Fibroblastos/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Animales , Secuencia de Bases , Biglicano , Tipificación del Cuerpo/efectos de los fármacos , Bovinos , Diferenciación Celular/efectos de los fármacos , Dermatán Sulfato/farmacología , Ectodermo/efectos de los fármacos , Ectodermo/metabolismo , Embrión no Mamífero/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glipicanos/metabolismo , Heparitina Sulfato/farmacología , Humanos , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteoglicanos/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Transducción de Señal/efectos de los fármacos , Sindecano-4/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/efectos de los fármacos , Cola (estructura animal)/embriología , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
4.
Int J Dev Biol ; 52(8): 1119-22, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18956345

RESUMEN

We have recently identified 1110032E23Rik as a down-regulated target gene in Fgf receptor-signalling-deficient mouse embryoid bodies. Here, we present the expression pattern of this novel gene, designated Ened (Expressed in Nerve and Epithelium during Development), in mouse and Xenopus laevis embryos. Murine Ened transcripts were first seen at E9.5 in the heart and the gastrointestinal tract. At later stages of gestation, expression could be found in the floor plate, peripheral nervous system, lens epithelium, skin, midline dorsal aorta, lung, kidney and testis. In Xenopus, the expression of the Ened orthologue displayed common RNA distribution in several ectodermal and mesodermal tissues, but also distinct expression in locations including the brain, notochord and blood islands. We suggest that Ened might be a novel target gene of the Fgfr signalling pathway during embryonic development, and that its expression could be modulated by the basement membrane component laminin-111.


Asunto(s)
Desarrollo Embrionario/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Epitelio/embriología , Epitelio/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Nervios Periféricos/embriología , Nervios Periféricos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal , Proteínas de Xenopus/genética
5.
PLoS One ; 13(1): e0191751, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370293

RESUMEN

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin. Here we investigate the expression of Dse and Dsel in Xenopus embryos. We show that both genes are maternally expressed and exhibit partially overlapping activity in the eyes, brain, trigeminal ganglia, neural crest, adenohypophysis, sclerotome, and dorsal endoderm. Dse is specifically expressed in the epidermis, anterior surface ectoderm, spinal nerves, notochord and dermatome, whereas Dsel mRNA alone is transcribed in the spinal cord, epibranchial ganglia, prechordal mesendoderm and myotome. The expression of the two genes coincides with sites of cell differentiation in the epidermis and neural tissue. Several expression domains can be linked to previously reported phenotypes of knockout mice and clinical manifestations, such as the Musculocontractural Ehlers-Danlos syndrome and psychiatric disorders.


Asunto(s)
Carbohidrato Epimerasas/genética , Regulación del Desarrollo de la Expresión Génica , Xenopus laevis/embriología , Animales , Encéfalo/metabolismo , Hibridación in Situ , Sondas ARN , ARN Mensajero/genética
6.
Int J Dev Biol ; 49(7): 781-96, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16172975

RESUMEN

Secreted proteins play a crucial role in intercellular communication during embryogenesis and in the adult. We recently described a novel method, designated as secretion cloning, that allows identifying extracellular proteins exclusively based on their ability to be secreted by transfected cells. In this paper, we present the results of a large-scale screening of more than 90,000 clones from three cDNA expression libraries constructed from early Xenopus embryos. Of 170 sequenced clones, 65 appeared to encode secreted proteins; 26 clones (40%) were identical to previously known Xenopus genes, 25 clones (38%) were homologous to other genes identified in various organisms and 14 clones (22%) were novel. Apart from these bona fide secreted proteins, we also isolated lysosomal or other secretory pathway proteins and some cytoplasmic proteins commonly found in body fluids. Among the novel secreted proteins were two putative growth factors of the Granulin family, termed xGra1 and xGra2; they are structurally similar to EGF and TGFalpha and show a spotted expression pattern in the epidermis. Another secreted protein, designated xSOUL, belongs to the family of heme-binding proteins and exhibits distinct expression in the early brain. A third protein, termed Xystatin, is related to cysteine proteinase inhibitors. Our results indicate that secretion cloning is an effective and generally useful tool for the unbiased isolation of secreted proteins.


Asunto(s)
Clonación Molecular/métodos , Embrión no Mamífero/metabolismo , Espacio Extracelular/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Sustancias de Crecimiento/química , Sustancias de Crecimiento/genética , Sustancias de Crecimiento/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores de Tiempo
7.
Dis Model Mech ; 9(6): 607-20, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27101845

RESUMEN

Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Dermatán Sulfato/farmacología , Síndrome de Ehlers-Danlos/patología , Fibronectinas/metabolismo , Músculos/patología , Cresta Neural/patología , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Adhesión Celular/efectos de los fármacos , Polaridad Celular , Sulfatos de Condroitina/metabolismo , Síndrome de Ehlers-Danlos/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Ácido Idurónico/metabolismo , Modelos Biológicos , Neoplasias/patología , Placa Neural/efectos de los fármacos , Placa Neural/metabolismo , Racemasas y Epimerasas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética
8.
Dev Cell ; 23(1): 210-8, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22705393

RESUMEN

Single-cell migration is a key process in development, homeostasis, and disease. Nevertheless, the control over basic cellular mechanisms directing cells into motile behavior in vivo is largely unknown. Here, we report on the identification of a minimal set of parameters the regulation of which confers proper morphology and cell motility. Zebrafish primordial germ cells rendered immotile by knockdown of Dead end, a negative regulator of miRNA function, were used as a platform for identifying processes restoring motility. We have defined myosin contractility, cell adhesion, and cortex properties as factors whose proper regulation is sufficient for restoring cell migration of this cell type. Tight control over the level of these cellular features, achieved through a balance between miRNA-430 function and the action of the RNA-binding protein Dead end, effectively transforms immotile primordial germ cells into polarized cells that actively migrate relative to cells in their environment.


Asunto(s)
Movimiento Celular/fisiología , Células Germinativas/citología , Proteínas de Unión al ARN/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Adhesión Celular/fisiología , Polaridad Celular/fisiología , Células Germinativas/fisiología , Homeostasis/fisiología , Presión Hidrostática , MicroARNs/genética , Datos de Secuencia Molecular , Miosinas/fisiología
9.
Development ; 136(3): 461-72, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19141675

RESUMEN

Retinoic acid (RA) is an important morphogen that regulates many biological processes, including the development of the central nervous system (CNS). Its synthesis from vitamin A (retinol) occurs in two steps, with the second reaction--catalyzed by retinal dehydrogenases (RALDHs)--long considered to be crucial for tissue-specific RA production in the embryo. We have recently identified the Xenopus homologue of retinol dehydrogenase 10 (XRDH10) that mediates the first step in RA synthesis from retinol to retinal. XRDH10 is specifically expressed in the dorsal blastopore lip and in other domains of the early embryo that partially overlap with XRALDH2 expression. We show that endogenous RA suppresses XRDH10 gene expression, suggesting negative-feedback regulation. In mRNA-injected Xenopus embryos, XRDH10 mimicked RA responses, influenced the gene expression of organizer markers, and synergized with XRALDH2 in posteriorizing the developing brain. Knockdown of XRDH10 and XRALDH2 by specific antisense morpholino oligonucleotides had the opposite effects on organizer gene expression, and caused a ventralized phenotype and anteriorization of the brain. These data indicate that the conversion of retinol into retinal is a developmentally controlled step involved in specification of the dorsoventral and anteroposterior body axes, as well as in pattern formation of the CNS. We suggest that the combinatorial gene expression and concerted action of XRDH10 and XRALDH2 constitute a ;biosynthetic enzyme code' for the establishment of a morphogen gradient in the embryo.


Asunto(s)
Oxidorreductasas de Alcohol/fisiología , Sistema Nervioso Central/fisiología , Tretinoina/fisiología , Xenopus laevis/fisiología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidasa/metabolismo , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/fisiología , Sistema Nervioso Central/embriología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , Retinal-Deshidrogenasa , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA