Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Biol ; 18(11): e3000904, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33156822

RESUMEN

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine-which also targets 2C-but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed.


Asunto(s)
Antivirales/farmacología , Proteínas Portadoras/efectos de los fármacos , Enterovirus/efectos de los fármacos , Proteínas no Estructurales Virales/efectos de los fármacos , Antígenos Virales , Proteínas Portadoras/metabolismo , Descubrimiento de Drogas/métodos , Enterovirus/patogenicidad , Infecciones por Enterovirus/virología , Fluoxetina/farmacología , Células HeLa , Humanos , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
2.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31829496

RESUMEN

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Asunto(s)
Enterovirus , Animales , Enterovirus/genética , Enterovirus/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Células Sf9 , Replicación Viral
3.
PLoS Pathog ; 15(8): e1007962, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381608

RESUMEN

Enteroviruses, members of the family of picornaviruses, are the most common viral infectious agents in humans causing a broad spectrum of diseases ranging from mild respiratory illnesses to life-threatening infections. To efficiently replicate within the host cell, enteroviruses hijack several host factors, such as ACBD3. ACBD3 facilitates replication of various enterovirus species, however, structural determinants of ACBD3 recruitment to the viral replication sites are poorly understood. Here, we present a structural characterization of the interaction between ACBD3 and the non-structural 3A proteins of four representative enteroviruses (poliovirus, enterovirus A71, enterovirus D68, and rhinovirus B14). In addition, we describe the details of the 3A-3A interaction causing the assembly of the ACBD3-3A heterotetramers and the interaction between the ACBD3-3A complex and the lipid bilayer. Using structure-guided identification of the point mutations disrupting these interactions, we demonstrate their roles in the intracellular localization of these proteins, recruitment of downstream effectors of ACBD3, and facilitation of enterovirus replication. These structures uncovered a striking convergence in the mechanisms of how enteroviruses and kobuviruses, members of a distinct group of picornaviruses that also rely on ACBD3, recruit ACBD3 and its downstream effectors to the sites of viral replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Picornaviridae/fisiología , Proteínas Virales/metabolismo , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Conformación Proteica , Homología de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
4.
PLoS Pathog ; 11(9): e1005185, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26406250

RESUMEN

Cardioviruses, including encephalomyocarditis virus (EMCV) and the human Saffold virus, are small non-enveloped viruses belonging to the Picornaviridae, a large family of positive-sense RNA [(+)RNA] viruses. All (+)RNA viruses remodel intracellular membranes into unique structures for viral genome replication. Accumulating evidence suggests that picornaviruses from different genera use different strategies to generate viral replication organelles (ROs). For instance, enteroviruses (e.g. poliovirus, coxsackievirus, rhinovirus) rely on the Golgi-localized phosphatidylinositol 4-kinase III beta (PI4KB), while cardioviruses replicate independently of the kinase. By which mechanisms cardioviruses develop their ROs is currently unknown. Here we show that cardioviruses manipulate another PI4K, namely the ER-localized phosphatidylinositol 4-kinase III alpha (PI4KA), to generate PI4P-enriched ROs. By siRNA-mediated knockdown and pharmacological inhibition, we demonstrate that PI4KA is an essential host factor for EMCV genome replication. We reveal that the EMCV nonstructural protein 3A interacts with and is responsible for PI4KA recruitment to viral ROs. The ensuing phosphatidylinositol 4-phosphate (PI4P) proved important for the recruitment of oxysterol-binding protein (OSBP), which delivers cholesterol to EMCV ROs in a PI4P-dependent manner. PI4P lipids and cholesterol are shown to be required for the global organization of the ROs and for viral genome replication. Consistently, inhibition of OSBP expression or function efficiently blocked EMCV RNA replication. In conclusion, we describe for the first time a cellular pathway involved in the biogenesis of cardiovirus ROs. Remarkably, the same pathway was reported to promote formation of the replication sites of hepatitis C virus, a member of the Flaviviridae family, but not other picornaviruses or flaviviruses. Thus, our results highlight the convergent recruitment by distantly related (+)RNA viruses of a host lipid-modifying pathway underlying formation of viral replication sites.


Asunto(s)
Infecciones por Cardiovirus/metabolismo , Virus de la Encefalomiocarditis/fisiología , Interacciones Huésped-Parásitos/fisiología , Metabolismo de los Lípidos/fisiología , Replicación Viral/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Animales , Western Blotting , Hepacivirus/fisiología , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Fosfatos de Fosfatidilinositol/metabolismo , Picornaviridae , Virus ARN , ARN Interferente Pequeño , Receptores de Esteroides/metabolismo , Transfección
5.
Antimicrob Agents Chemother ; 60(10): 6402-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480860

RESUMEN

Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in cells. AG1478 impaired replication of EMCV and HCV but not that of an EMCV mutant previously shown to escape PI4KA inhibition. This work uncovers novel cellular and antiviral properties of AG1478, a compound previously regarded only as a cancer chemotherapy agent.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Antivirales/farmacología , Virus de la Encefalomiocarditis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hepacivirus/efectos de los fármacos , Quinazolinas/farmacología , Tirfostinos/farmacología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/fisiología , Células HeLa/efectos de los fármacos , Células HeLa/virología , Hepacivirus/fisiología , Humanos , Terapia Molecular Dirigida/métodos , Mutación , Replicación Viral/efectos de los fármacos
6.
Cell Microbiol ; 17(8): 1144-56, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25645595

RESUMEN

Picornaviruses are a family of positive-strand RNA viruses that includes important human and animal pathogens. Upon infection, picornaviruses induce an extensive remodelling of host cell membranes into replication organelles (ROs), which is critical for replication. Membrane lipids and lipid remodelling processes are at the base of RO formation, yet their involvement remains largely obscure. Recently, phosphatidylinositol-4-phosphate was the first lipid discovered to be important for the replication of a number of picornaviruses. Here, we investigate the role of the lipid cholesterol in picornavirus replication. We show that two picornaviruses from distinct genera that rely on different host factors for replication, namely the enterovirus coxsackievirus B3 (CVB3) and the cardiovirus encephalomyocarditis virus (EMCV), both recruited cholesterol to their ROs. Although CVB3 and EMCV both required cholesterol for efficient genome replication, the viruses appeared to rely on different cellular cholesterol pools. Treatments that altered the distribution of endosomal cholesterol inhibited replication of both CVB3 and EMCV, showing the importance of endosomal cholesterol shuttling for the replication of these viruses. Summarizing, we here demonstrate the importance of cholesterol homeostasis for efficient replication of CVB3 and EMCV.


Asunto(s)
Colesterol/metabolismo , Virus de la Encefalomiocarditis/fisiología , Enterovirus Humano B/fisiología , ARN Viral/metabolismo , Replicación Viral , Membrana Celular/metabolismo , Membrana Celular/virología , Células HeLa , Humanos , Orgánulos/metabolismo , Orgánulos/virología
7.
J Virol ; 88(5): 2725-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24352456

RESUMEN

UNLABELLED: Members of the Enterovirus (poliovirus [PV], coxsackieviruses, and human rhinoviruses) and Kobuvirus (Aichi virus) genera in the Picornaviridae family rely on PI4KIIIß (phosphatidylinositol-4-kinase IIIß) for efficient replication. The small membrane-anchored enteroviral protein 3A recruits PI4KIIIß to replication organelles, yet the underlying mechanism has remained elusive. Recently, it was shown that kobuviruses recruit PI4KIIIß through interaction with ACBD3 (acyl coenzyme A [acyl-CoA]-binding protein domain 3), a novel interaction partner of PI4KIIIß. Therefore, we investigated a possible role for ACBD3 in recruiting PI4KIIIß to enterovirus replication organelles. Although ACBD3 interacted directly with coxsackievirus B3 (CVB3) 3A, its depletion from cells by RNA interference did not affect PI4KIIIß recruitment to replication organelles and did not impair CVB3 RNA replication. Enterovirus 3A was previously also proposed to recruit PI4KIIIß via GBF1/Arf1, based on the known interaction of 3A with GBF1, an important regulator of secretory pathway transport and a guanine nucleotide exchange factor (GEF) of Arf1. However, our results demonstrate that inhibition of GBF1 or Arf1 either by pharmacological inhibition or depletion with small interfering RNA (siRNA) treatment did not affect the ability of 3A to recruit PI4KIIIß. Furthermore, we show that a 3A mutant that no longer binds GBF1 was capable of recruiting PI4KIIIß, even in ACBD3-depleted cells. Together, our findings indicate that unlike originally envisaged, coxsackievirus recruits PI4KIIIß to replication organelles independently of ACBD3 and GBF1/Arf1. IMPORTANCE: A hallmark of enteroviral infection is the generation of new membranous structures to support viral RNA replication. The functionality of these "replication organelles" depends on the concerted actions of both viral nonstructural proteins and co-opted host factors. It is thus essential to understand how these structures are formed and which cellular components are key players in this process. GBF1/Arf1 and ACBD3 have been proposed to contribute to the recruitment of the essential lipid-modifying enzyme PI4KIIIß to enterovirus replication organelles. Here we show that the enterovirus CVB3 recruits PI4KIIIß by a mechanism independent of both GBF1/Arf1 and ACBD3. This study shows that the strategy employed by coxsackievirus to recruit PI4KIIIß to replication organelles is far more complex than initially anticipated.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enterovirus Humano B/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Replicación Viral , Animales , Línea Celular , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/virología , Humanos , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/metabolismo
8.
Genome Res ; 21(11): 1955-68, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21795383

RESUMEN

SRC proteins are non-receptor tyrosine kinases that play key roles in regulating signal transduction by a diverse set of cell surface receptors. They contain N-terminal SH4 domains that are modified by fatty acylation and are functioning as membrane anchors. Acylated SH4 domains are both necessary and sufficient to mediate specific targeting of SRC kinases to the inner leaflet of plasma membranes. Intracellular transport of SRC kinases to the plasma membrane depends on microdomains into which SRC kinases partition upon palmitoylation. In the present study, we established a live-cell imaging screening system to identify gene products involved in plasma membrane targeting of SRC kinases. Based on siRNA arrays and a human model cell line expressing two kinds of SH4 reporter molecules, we conducted a genome-wide analysis of SH4-dependent protein targeting using an automated microscopy platform. We identified and validated 54 gene products whose down-regulation causes intracellular retention of SH4 reporter molecules. To detect and quantify this phenotype, we developed a software-based image analysis tool. Among the identified gene products, we found factors involved in lipid metabolism, intracellular transport, and cellular signaling processes. Furthermore, we identified proteins that are either associated with SRC kinases or are related to various known functions of SRC kinases such as other kinases and phosphatases potentially involved in SRC-mediated signal transduction. Finally, we identified gene products whose function is less defined or entirely unknown. Our findings provide a major resource for future studies unraveling the molecular mechanisms that underlie proper targeting of SRC kinases to the inner leaflet of plasma membranes.


Asunto(s)
Membrana Celular/enzimología , Genoma Humano , Fenotipo , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Homeostasis , Humanos , Espacio Intracelular/metabolismo , Metabolismo de los Lípidos , Lipoilación , Dominios y Motivos de Interacción de Proteínas , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-yes/metabolismo , ARN Interferente Pequeño , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Familia-src Quinasas/genética
9.
Traffic ; 12(6): 682-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21324056

RESUMEN

COPI (coat protein I)-coated vesicles are implicated in various transport steps within the early secretory pathway. The major structural component of the COPI coat is the heptameric complex coatomer (CM). Recently, four isoforms of CM were discovered that may help explain various transport steps in which the complex has been reported to be involved. Biochemical studies of COPI vesicles currently use CM purified from animal tissue or cultured cells, a mixture of the isoforms, impeding functional and structural studies of individual complexes. Here we report the cloning into single baculoviruses of all CM subunits including their isoforms and their combination for expression of heptameric CM isoforms in insect cells. We show that all four isoforms of recombinant CM are fully functional in an in vitro COPI vesicle biogenesis assay. These novel tools enable functional and structural studies on CM isoforms and their subcomplexes and allow studying mutants of CM.


Asunto(s)
Proteína Coatómero/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Línea Celular , Proteína Coatómero/genética , Aparato de Golgi/metabolismo , Ratones , Isoformas de Proteínas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/genética
11.
Vaccine X ; 8: 100102, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34195600

RESUMEN

A novel, genetically-stabilized type 2 oral polio vaccine (nOPV2), developed to assist in the global polio eradication program, was recently the first-ever vaccine granted Emergency Use Listing by the WHO. Lot release tests for this vaccine included-for the first time to our knowledge-the assessment of genetic heterogeneity using next-generation sequencing (NGS). NGS ensures that the genetically-modified regions of the vaccine virus genome remain as designed and that levels of polymorphisms which may impact safety or efficacy are controlled during routine production. The variants present in nOPV2 lots were first assessed for temperature sensitivity and neurovirulence using molecular clones to inform which polymorphisms warranted formal evaluation during lot release. The novel use of NGS as a lot release test required formal validation of the method. Analysis of an nOPV2 lot spiked with the parental Sabin-2 strain enabled performance characteristics of the method to be assessed simultaneously at over 40 positions in the genome. These characteristics included repeatability and intermediate precision of polymorphism measurement, linearity of both spike-induced and nOPV2 lot-specific polymorphisms, and the limit-of-detection of spike-induced polymorphisms. The performance characteristics of the method met pre-defined criteria for 34 spike-induced polymorphic sites and 8 polymorphisms associated with the nOPV2 preparation; these sites collectively spanned most of the viral genome. Finally, the co-location of variants of interest on genomes was evaluated, with implications for the interpretation of NGS discussed.

12.
Mol Biol Evol ; 26(8): 1707-14, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19429673

RESUMEN

The members of the p24 protein family have an important but unclear role in transport processes in the early secretory pathway. The p24 family consists of four subfamilies (alpha, beta, gamma, and delta), whereby the exact composition of the family varies among species. Despite more than 15 years of p24 research, the vertebrate p24 family is still surprisingly ill characterized. Here, we describe the human, mouse, Xenopus, and zebrafish orthologues of 10 p24 family members and a new member that we term p24gamma(5). Of these eleven p24 family members, nine are conserved throughout the vertebrate lineage, whereas two (p24gamma(4) and p24delta(2)) occur in some but not all vertebrates. We further show that all p24 proteins are widely expressed in mouse, except for p24alpha(1) and p24gamma(5) that display restricted expression patterns. Thus, we present for the first time a comprehensive overview of the phylogeny and expression of the vertebrate p24 protein family.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Vertebrados/genética , Animales , Codón de Terminación , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Filogenia
13.
Biol Cell ; 101(9): 495-509, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19566487

RESUMEN

The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type-I transmembrane proteins of approximately 24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER-Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Familia de Multigenes , Animales , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Transporte de Proteínas , Vías Secretoras
14.
Biol Cell ; 101(4): 207-19, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18699773

RESUMEN

BACKGROUND INFORMATION: The p24 protein family plays an important but unclear role at the ER (endoplasmic reticulum)-Golgi interface. A p24 member from each subfamily (p24alpha(3), beta(1), gamma(3) and delta(2)) is upregulated with the prohormone POMC (pro-opiomelanocortin) when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated. Here we explored the role of p24 by generating and analysing Xenopus with melanotrope cell-specific transgene expression of p24beta(1) or p24gamma(3), two of the p24 proteins coexpressed with POMC, and compared the results with those previously reported for the two other coexpressed p24s (p24alpha(3) and p24delta(2)). RESULTS: The transgene expression of p24beta(1) or p24gamma(3) did not affect the endogenous p24 proteins or affected only endogenous p24gamma(3) respectively, whereas in transgenics expressing p24alpha(3) and p24delta(2), the levels of all endogenous p24 proteins were strongly decreased. Nevertheless, as for p24alpha(3) but albeit to a lesser extent, in the p24beta(1)-transgenic melanotrope cells the rate of cargo cleavage was reduced, probably reflecting reduced cargo transport from the ER, and POMC glycosylation and sulfation in the Golgi were not affected. The p24gamma(3)-transgenic cells displayed features of both the p24alpha(3)-transgenics (reduced cargo cleavage, normal POMC sulfation) and the p24delta(2)-transgenics (affected POMC glycosylation). CONCLUSIONS: Our results show that the four upregulated proteins p24alpha(3), beta(1), gamma(3) and delta(2) have non-redundant roles in the early secretory pathway, and suggest that each p24 subfamily member provides a proper ER/Golgi subcompartmental microenvironment, together allowing correct secretory protein transport and processing.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proopiomelanocortina/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Animales Modificados Genéticamente , Melanotrofos/metabolismo , Melanotrofos/ultraestructura , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Proopiomelanocortina/genética , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
15.
Antiviral Res ; 178: 104781, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32234539

RESUMEN

Enteroviruses (EV) are a group of positive-strand RNA (+RNA) viruses that include many important human pathogens (e.g. poliovirus, coxsackievirus, echovirus, numbered enteroviruses and rhinoviruses). Fluoxetine was identified in drug repurposing screens as potent inhibitor of enterovirus B and enterovirus D replication. In this paper we are reporting the synthesis and the antiviral effect of a series of fluoxetine analogues. The results obtained offer a preliminary insight into the structure-activity relationship of its chemical scaffold and confirm the importance of the chiral configuration. We identified a racemic fluoxetine analogue, 2b, which showed a similar antiviral activity compared to (S)-fluoxetine. Investigating the stereochemistry of 2b revealed that the S-enantiomer exerts potent antiviral activity and increased the antiviral spectrum compared to the racemic mixture of 2b. In line with the observed antiviral effect, the S-enantiomer displayed a dose-dependent shift in the melting temperature in thermal shift assays, indicative for direct binding to the recombinant 2C protein.


Asunto(s)
Antivirales/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano D/efectos de los fármacos , Fluoxetina/análogos & derivados , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/química , Antivirales/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Efecto Citopatogénico Viral/efectos de los fármacos , Enterovirus Humano B/fisiología , Enterovirus Humano D/fisiología , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Células HeLa , Humanos , Estereoisomerismo , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
16.
Nat Commun ; 11(1): 4332, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859902

RESUMEN

The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the ~3,200 proteins quantified throughout the time course, a large amount (~25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections.


Asunto(s)
Infecciones por Coxsackievirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteoma/análisis , Animales , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Supervivencia Celular , Enterovirus/fisiología , Enterovirus Humano B/fisiología , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosforilación , Transducción de Señal , Proteínas Virales/metabolismo
17.
BMC Cell Biol ; 10: 35, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19422674

RESUMEN

BACKGROUND: In black-background-adapted Xenopus laevis, the intermediate pituitary melanotrope cells are hyperactive, producing large amounts of their major secretory cargo proopiomelanocortin (POMC, representing ~80% of all newly synthesised proteins), whereas in white-adapted frogs these cells are only basally active. Here we explored in the hyperactive and basally active melanotrope cells the capacity for posttranslational POMC processing events in the secretory pathway. RESULTS: We found that the hyperactive cells produced mainly non-complex N-glycosylated POMC, whereas in the basally active cells POMC was mostly complex N-glycosylated. Furthermore, the relative level of POMC sulphation was ~5.5-fold lower in the hyperactive than in the basally active cells. When the cargo load in the secretory pathway of the hyperactive cells was pharmacologically reduced, the relative amount of complex glycosylated POMC markedly increased. CONCLUSION: Collectively, our data show that the secretory pathway in hyperactive neuroendocrine secretory cells lacks the capacity to fully comply with the high demands for complex glycosylation and sulphation of the overload of secretory cargo. Thus, a hyperactive secretory cell may run short in providing an output of correctly modified biological signals.


Asunto(s)
Melanotrofos/metabolismo , Células Neuroendocrinas/metabolismo , Proopiomelanocortina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Células Cultivadas , Glicosilación , Proopiomelanocortina/biosíntesis , Xenopus
18.
mBio ; 10(1)2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755512

RESUMEN

The enterovirus genus of the picornavirus family includes a large number of important human pathogens such as poliovirus, coxsackievirus, enterovirus A71, and rhinoviruses. Like all other positive-strand RNA viruses, genome replication of enteroviruses occurs on rearranged membranous structures called replication organelles (ROs). Phosphatidylinositol 4-kinase IIIß (PI4KB) is required by all enteroviruses for RO formation. The enteroviral 3A protein recruits PI4KB to ROs, but the exact mechanism remains elusive. Here, we investigated the role of acyl-coenzyme A binding domain containing 3 (ACBD3) in PI4KB recruitment upon enterovirus replication using ACBD3 knockout (ACBD3KO) cells. ACBD3 knockout impaired replication of representative viruses from four enterovirus species and two rhinovirus species. PI4KB recruitment was not observed in the absence of ACBD3. The lack of ACBD3 also affected the localization of individually expressed 3A, causing 3A to localize to the endoplasmic reticulum instead of the Golgi. Reconstitution of wild-type (wt) ACBD3 restored PI4KB recruitment and 3A localization, while an ACBD3 mutant that cannot bind to PI4KB restored 3A localization, but not virus replication. Consistently, reconstitution of a PI4KB mutant that cannot bind ACBD3 failed to restore virus replication in PI4KBKO cells. Finally, by reconstituting ACBD3 mutants lacking specific domains in ACBD3KO cells, we show that acyl-coenzyme A binding (ACB) and charged-amino-acid region (CAR) domains are dispensable for 3A-mediated PI4KB recruitment and efficient enterovirus replication. Altogether, our data provide new insight into the central role of ACBD3 in recruiting PI4KB by enterovirus 3A and reveal the minimal domains of ACBD3 involved in recruiting PI4KB and supporting enterovirus replication.IMPORTANCE Similar to all other positive-strand RNA viruses, enteroviruses reorganize host cellular membranes for efficient genome replication. A host lipid kinase, PI4KB, plays an important role in this membrane rearrangement. The exact mechanism of how enteroviruses recruit PI4KB was unclear. Here, we revealed a role of a Golgi-residing protein, ACBD3, as a mediator of PI4KB recruitment upon enterovirus replication. ACBD3 is responsible for proper localization of enteroviral 3A proteins in host cells, which is important for 3A to recruit PI4KB. By testing ACBD3 and PI4KB mutants that abrogate the ACBD3-PI4KB interaction, we showed that this interaction is crucial for enterovirus replication. The importance of specific domains of ACBD3 was evaluated for the first time, and the domains that are essential for enterovirus replication were identified. Our findings open up a possibility for targeting ACBD3 or its interaction with enteroviruses as a novel strategy for the development of broad-spectrum antienteroviral drugs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enterovirus Humano A/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Humanos , Proteínas de la Membrana/genética , Unión Proteica
19.
ACS Infect Dis ; 5(9): 1609-1623, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31305993

RESUMEN

Enteroviruses (family Picornaviridae) comprise a large group of human pathogens against which no licensed antiviral therapy exists. Drug-repurposing screens uncovered the FDA-approved drug fluoxetine as a replication inhibitor of enterovirus B and D species. Fluoxetine likely targets the nonstructural viral protein 2C, but detailed mode-of-action studies are missing because structural information on 2C of fluoxetine-sensitive enteroviruses is lacking. We here show that broad-spectrum anti-enteroviral activity of fluoxetine is stereospecific concomitant with binding to recombinant 2C. (S)-Fluoxetine inhibits with a 5-fold lower 50% effective concentration (EC50) than racemic fluoxetine. Using a homology model of 2C of the fluoxetine-sensitive enterovirus coxsackievirus B3 (CVB3) based upon a recently elucidated structure of a fluoxetine-insensitive enterovirus, we predicted stable binding of (S)-fluoxetine. Structure-guided mutations disrupted binding and rendered coxsackievirus B3 (CVB3) resistant to fluoxetine. The study provides new insights into the anti-enteroviral mode-of-action of fluoxetine. Importantly, using only (S)-fluoxetine would allow for lower dosing in patients, thereby likely reducing side effects.


Asunto(s)
Proteínas Portadoras/metabolismo , Enterovirus Humano B/fisiología , Enterovirus Humano D/fisiología , Fluoxetina/farmacología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Reposicionamiento de Medicamentos , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano D/efectos de los fármacos , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Unión Proteica , Conformación Proteica , Homología Estructural de Proteína , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
20.
Nat Rev Microbiol ; 16(6): 391, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29725113

RESUMEN

In the version of this Review originally published, co-author Hendrik Jan Thibaut's name was incorrectly indexed as "Jan Thibaut, H". It should have appeared as "Thibaut, HJ". This has now been corrected in all versions of the Review. The publisher apologizes to the authors and to readers for this error.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA