Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 19(4): 469-77, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26931647

RESUMEN

Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities.


Asunto(s)
Hongos/fisiología , Especies Introducidas , Poaceae/microbiología , Poaceae/fisiología , Ecosistema , Control Biológico de Vectores
2.
Ecology ; 93(8): 1902-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22928418

RESUMEN

The enemy release hypothesis (ERH) is often cited to explain why some plants successfully invade natural communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their native range but are relieved of this pressure where their enemies have not been co-introduced. Some studies have shown that invasive plants sustain lower levels of herbivore damage when compared to native species, but how damage affects fitness and population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida (USA) to experimentally test the ERH, addressing deficiencies in our understanding of the role of natural enemies in plant invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the ERH, indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion of E. uniflora leaves than those of its native congeners. This interaction is particularly interesting because M. undatus and E. uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore. Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to accumulate and new communities assemble worldwide.


Asunto(s)
Ecosistema , Herbivoria/fisiología , Especies Introducidas , Control Biológico de Vectores/métodos , Syzygium/fisiología , Gorgojos/fisiología , Animales , Brasil , Florida , Hojas de la Planta
3.
Mycologia ; 112(5): 921-931, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32703099

RESUMEN

Environmentally damaging invasive plants can also serve as reservoir hosts for agricultural pathogens. Microstegium vimineum is an invasive C4 annual grass that is present throughout the midwestern and eastern United States. It can reach high densities in disturbed areas such as crop-forest interfaces, which creates the potential for pathogen spillover from M. vimineum to agricultural crops and native plants. A previous study that surveyed disease on M. vimineum found a large-spored Bipolaris species that was widespread on M. vimineum and also isolated from co-occurring native grasses. Here, we report that the large-spored fungus isolated from M. vimineum and the native grass Elymus virginicus is Drechslera gigantea, based on comparison with published descriptions of morphological traits, and establish that D. gigantea is a pathogen of M. vimineum and E. virginicus. We review the phylogenetic placement and taxonomic history of D. gigantea and propose that it be reassigned to the genus Bipolaris as Bipolaris gigantea.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/citología , Ascomicetos/genética , Bipolaris/clasificación , Bipolaris/genética , Especies Introducidas , Poaceae/microbiología , Ascomicetos/patogenicidad , Bipolaris/citología , Bipolaris/patogenicidad , Filogenia , Enfermedades de las Plantas/clasificación , Enfermedades de las Plantas/genética , Análisis de Secuencia de ADN , Estados Unidos
4.
AoB Plants ; 72015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25829379

RESUMEN

Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m(2). There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA