Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 25(12): e202400147, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629211

RESUMEN

Chiral alcohols are not only important building blocks of various bioactive natural compounds and pharmaceuticals, but can serve as synthetic precursors for other valuable organic chemicals, thus the synthesis of these products is of great importance. Bio-catalysis represents one effective way to obtain these molecules, however, the weak stability and high cost of enzymes often hinder its broad application. In this work, we designed a biological nanoreactor by embedding alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) in metal-organic-framework ZIF-8. The biocatalyst ADH&GDH@ZIF-8 could be applied to the asymmetric reduction of a series of ketones to give chiral alcohols in high yields (up to 99 %) and with excellent enantioselectivities (>99 %). In addition, the heterogeneous biocatalyst could be recycled and reused at least four times with slight activity decline. Moreover, E. coli containing ADH and GDH was immobilized by ZIF-8 to form biocatalyst E. coli@ZIF-8, which also exhibits good catalytic behaviours. Finally, the chiral alcohols are further converted to marketed drugs (R)-Fendiline, (S)-Rivastigmine and NPS R-568 respectively.


Asunto(s)
Alcohol Deshidrogenasa , Biocatálisis , Enzimas Inmovilizadas , Escherichia coli , Glucosa 1-Deshidrogenasa , Cetonas , Estructuras Metalorgánicas , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/metabolismo , Cetonas/química , Cetonas/metabolismo , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Glucosa 1-Deshidrogenasa/química , Oxidación-Reducción , Estereoisomerismo
2.
Chemistry ; 30(32): e202400454, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38568868

RESUMEN

Rivastigmine is one of the several pharmaceuticals widely prescribed for the treatment of Alzheimer's disease. However, its practical synthesis still faces many issues, such as the involvement of toxic metals and harsh reaction conditions. Herein, we report a chemo-enzymatic synthesis of Rivastigmine. The key chiral intermediate was synthesized by an engineered alcohol dehydrogenase from Lactobacillus brevis (LbADH). A semi-rational approach was employed to improve its catalytic activity and thermal stability. Several LbADH variants were obtained with a remarkable increase in activity and melting temperature. Exploration of the substrate scope of these variants demonstrated improved activities toward various ketones, especially acetophenone analogs. To further recycle and reuse the biocatalyst, one LbADH variant and glucose dehydrogenase were co-immobilized on nanoparticles. By integrating enzymatic and chemical steps, Rivastigmine was successfully synthesized with an overall yield of 66 %. This study offers an efficient chemo-enzymatic route for Rivastigmine and provides several efficient LbADH variants with a broad range of potential applications.


Asunto(s)
Alcohol Deshidrogenasa , Enzimas Inmovilizadas , Levilactobacillus brevis , Rivastigmina , Rivastigmina/química , Levilactobacillus brevis/enzimología , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Biocatálisis , Acetofenonas/química , Acetofenonas/metabolismo , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA