Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(37): 25353-25360, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703044

RESUMEN

Photocatalytic oxidation is an efficient and promising technology for reducing indoor pollution levels of formaldehyde (HCHO). However, developing efficient and low-cost photocatalysts for the removal of HCHO remains challenging due to the time-consuming and expensive nature of traditional "trial and error" and "directed research" approaches. To achieve this goal, first-principles density functional theory (DFT) calculations were conducted to high-throughput screen candidate TM-C3N6 photocatalysts for high-performance degradation of HCHO. The results revealed that Zr-C3N6 and Hf-C3N6 in functionalizing C3N6 with 28 transition metals showed excellent adsorption energy of HCHO, boosting the highly effective capture of HCHO. Meanwhile, an excellent adsorption performance mechanism was further elicited by the electric structure-property relationship. In addition, reaction mechanisms for HCHO degradation and three potential reaction pathways for HCHO degradation were systematically evaluated. Our findings indicated that hydroxyl-assisted dehydrogenation and oxygen-assisted dehydrogenation are the most favorable pathways, with rate-limiting steps involving the formation of ˙OH and ˙O radicals. Overall, this study may provide new insights into a high-throughput screening of novel photocatalysts that are both high-performing and low-cost for the removal of formaldehyde. This, in turn, can accelerate the experimental development process and reduce the associated costs and time consumption.

2.
Phys Chem Chem Phys ; 24(43): 26776-26784, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36314447

RESUMEN

To rapidly design nitrogen reduction reaction (NRR) electrocatalysts with superior activity and selectivity is a great challenge. Herein, we propose a simple mixture strategy including three screening steps and a descriptor to predict NRR electrocatalysts with outstanding activity and selectivity based on density functional theory (DFT). Twenty-eight candidate transition-metal dimers anchored on nitrogen-doped graphene were systematically investigated through our mixture strategy. The results show that VRu-NC exhibits a high NRR activity and suppression of the competitive hydrogen evolution reaction (HER) following the mixed mechanism with a favorable limiting potential (UL) of -0.21 V. Finally, the mechanism of the catalytic reaction pathway was investigated according to the profile of atomic orbitals and electronic properties. This work proposes a feasible strategy for rapid screening of the high-performance of double atomic electrocatalysts with excellent activity and selectivity for the NRR.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37931039

RESUMEN

Production of hydrocarbon fuels containing sulfur in ultralow levels is in high demand and requires the development of novel catalytic systems for oxidative desulfurization (ODS). Herein, a new nanocomposite SiW12@ZSTU-10 catalyst containing H4SiW12O40 (SiW12) encapsulated into a zinc(II) 3D metal-organic framework (MOF) (ZSTU-10) was assembled and characterized. The intricate structure and porosity of ZSTU-10 permit efficient encapsulation of the catalytically active SiW12 cages. The impact of different experimental parameters on the ODS of model oil containing dibenzothiophene as a typical S-based contaminant was evaluated. The SiW12@ZSTU-10 catalyst exhibits remarkable activity with up to 99.8% sulfur removal in 30 min. Kinetic features, trapping tests, and mechanistic studies were also performed. Furthermore, the catalyst offered an outstanding thermal and chemical stability, without apparent leaching and decline in the activity after six cycles. Such an improved catalytic efficiency of SiW12@ZSTU-10 can be assigned to (i) size-matched occupation of the ZSTU-10 pores by SiW12-active species, (ii) prevention of polyoxometalate (POM) leaching from the MOF matrix, (iii) facilitation of the access of S-based substrates to the active sites of SiW12, and (iv) excellent stability and recyclability of the obtained nanocomposite. The preset work widens a family of promising nanocomposite catalysts for improving the desulfurization performance of hybrid POM-MOF catalytic systems.

4.
Adv Mater ; 35(41): e2306103, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549101

RESUMEN

Harnessing abundant renewable resources and pollutants on a large scale to address environmental challenges, while providing sustainable freshwater, is a significant endeavour. This study presents the design of fully functional solar vaporization devices (SVD) based on organic-inorganic hybrid nanocomposites (CCMs-x). These devices exhibit efficient photothermal properties that facilitate multitargeted interfacial reactions, enabling simultaneous catalysis of sewage and desalination. The localized interfacial heating generated by the photothermal effect of CCMs-x triggers surface-dominated catalysis and steam generation. The CCMs-x SVD achieves a solar water-vapor generation rate of 1.41 kg m-2 h-1 (90.8%), and it achieves over 95% removal of pollutants within 60 min under one-sun for practical application. The exceptional photothermal conversion rate of wastewater for environmental remediation and water capture is attributed to customized microenvironments within the system. The integrated parallel reaction system in SVD ensures it is a real-life application in multiple scenarios such as municipal/medical wastewater and brine containing high concentrations. Additionally, the SVD exhibits long-term durability, antifouling functionality toward complex ionic contaminants. This study not only demonstrates a one-stone-two-birds strategy for large-scale direct production of potable water from polluted seawater, but also opens up exciting possibilities for parallel production of energy and water resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA