Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121661

RESUMEN

Tubulin is a conserved protein that polymerizes into different forms of filamentous structures in Toxoplasma gondii, an obligate intracellular parasite in the phylum Apicomplexa. Two key tubulin-containing cytoskeletal components are subpellicular microtubules (SPMTs) and conoid fibrils (CFs). The SPMTs help maintain shape and gliding motility, while the CFs are implicated in invasion. Here, we use cryogenic electron tomography to determine the molecular structures of the SPMTs and CFs in vitrified intact and detergent-extracted parasites. Subvolume densities from detergent-extracted parasites yielded averaged density maps at subnanometer resolutions, and these were related back to their architecture in situ. An intralumenal spiral lines the interior of the 13-protofilament SPMTs, revealing a preferred orientation of these microtubules relative to the parasite's long axis. Each CF is composed of nine tubulin protofilaments that display a comma-shaped cross-section, plus additional associated components. Conoid protrusion, a crucial step in invasion, is associated with an altered pitch of each CF. The use of basic building blocks of protofilaments and different accessory proteins in one organism illustrates the versatility of tubulin to form two distinct types of assemblies, SPMTs and CFs.


Asunto(s)
Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Citoesqueleto/metabolismo , Tomografía con Microscopio Electrónico/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Orgánulos/metabolismo
2.
Nat Methods ; 16(11): 1161-1168, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611690

RESUMEN

Electron cryotomography is currently the only method capable of visualizing cells in three dimensions at nanometer resolutions. While modern instruments produce massive amounts of tomography data containing extremely rich structural information, data processing is very labor intensive and the results are often limited by the skills of the personnel rather than the data. We present an integrated workflow that covers the entire tomography data processing pipeline, from automated tilt series alignment to subnanometer resolution subtomogram averaging. Resolution enhancement is made possible through the use of per-particle per-tilt contrast transfer function correction and alignment. The workflow greatly reduces human bias, increases throughput and more closely approaches data-limited resolution for subtomogram averaging in both purified macromolecules and cells.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento Automatizado de Datos/métodos , Flujo de Trabajo , Procesamiento de Imagen Asistido por Computador/métodos
3.
Phys Rev Lett ; 127(2): 027602, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296905

RESUMEN

How superconductivity interacts with charge or nematic order is one of the great unresolved issues at the center of research in quantum materials. Ba_{1-x}Sr_{x}Ni_{2}As_{2} (BSNA) is a charge ordered pnictide superconductor recently shown to exhibit a sixfold enhancement of superconductivity due to nematic fluctuations near a quantum phase transition (at x_{c}=0.7) [1]. The superconductivity is, however, anomalous, with the resistive transition for 0.4

4.
Exp Brain Res ; 239(12): 3565-3572, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34581840

RESUMEN

State-dependent network models of sub-second interval timing propose that duration is encoded in states of neuronal populations that need to reset prior to a novel timing operation to maintain optimal timing performance. Previous research has shown that the approximate boundary of this reset interval can be inferred by varying the inter-stimulus interval between two to-be-timed intervals. However, the estimated boundary of this reset interval is broad (250-500 ms) and remains under-specified with implications for the characteristics of state-dependent network dynamics sub-serving interval timing. Here, we probed the interval specificity of this reset boundary by manipulating the inter-stimulus interval between standard and comparison intervals in two sub-second auditory duration discrimination tasks (100 and 200 ms) and a control (pitch) discrimination task using adaptive psychophysics. We found that discrimination thresholds improved with the introduction of a 333 ms inter-stimulus interval relative to a 250 ms inter-stimulus interval in both duration discrimination tasks, but not in the control task. This effect corroborates previous findings of a breakpoint in the discrimination performance for sub-second stimulus interval pairs as a function of an incremental inter-stimulus delay but more precisely localizes the minimal inter-stimulus delay range. These results suggest that state-dependent networks sub-serving sub-second timing require approximately 250-333 ms for the network to reset to maintain optimal interval timing.


Asunto(s)
Percepción del Tiempo , Percepción Auditiva , Discriminación en Psicología , Humanos , Redes Neurales de la Computación , Psicofísica
5.
Proc Natl Acad Sci U S A ; 115(26): E5916-E5925, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891682

RESUMEN

In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.


Asunto(s)
Citoesqueleto , Flagelos , Trypanosoma brucei brucei , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Flagelos/metabolismo , Flagelos/ultraestructura , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestructura
6.
Nat Methods ; 14(10): 983-985, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846087

RESUMEN

Cellular electron cryotomography offers researchers the ability to observe macromolecules frozen in action in situ, but a primary challenge with this technique is identifying molecular components within the crowded cellular environment. We introduce a method that uses neural networks to dramatically reduce the time and human effort required for subcellular annotation and feature extraction. Subsequent subtomogram classification and averaging yield in situ structures of molecular components of interest. The method is available in the EMAN2.2 software package.


Asunto(s)
Criopreservación , Cianobacterias/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Programas Informáticos
7.
Phys Rev Lett ; 122(14): 147601, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050473

RESUMEN

Ba(Ni_{1-x}Co_{x})_{2}As_{2} is a structural homologue of the pnictide high temperature superconductor, Ba(Fe_{1-x}Co_{x})_{2}As_{2}, in which the Fe atoms are replaced by Ni. Superconductivity is highly suppressed in this system, reaching a maximum T_{c}=2.3 K, compared to 24 K in its iron-based cousin, and the origin of this T_{c} suppression is not known. Using x-ray scattering, we show that Ba(Ni_{1-x}Co_{x})_{2}As_{2} exhibits a unidirectional charge density wave (CDW) at its triclinic phase transition. The CDW is incommensurate, exhibits a sizable lattice distortion, and is accompanied by the appearance of α Fermi surface pockets in photoemission [B. Zhou et al., Phys. Rev. B 83, 035110 (2011)PRBMDO1098-012110.1103/PhysRevB.83.035110], suggesting it forms by an unconventional mechanism. Co doping suppresses the CDW, paralleling the behavior of antiferromagnetism in iron-based superconductors. Our study demonstrates that pnictide superconductors can exhibit competing CDW order, which may be the origin of T_{c} suppression in this system.

8.
J Neurooncol ; 132(3): 393-400, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28293765

RESUMEN

The chemotherapeutic agent temozolomide (TMZ) is widely used in the treatment of glioblastoma multiforme (GBM). Rutin, a citrus flavonoid ecglycoside found in edible plants, has neuroprotective and anticancer activities. This study aimed to investigate the efficacy and the underlying mechanisms of rutin used in combination with TMZ in GBM. In vitro cell viability assay demonstrated that rutin alone had generally low cytotoxic effect, but it enhanced the efficacy of TMZ in a dose-dependent manner. Subcutaneous and orthotopic xenograft studies also showed that tumor volumes were significantly lower in mice receiving combined TMZ/Rutin treatment as compared to TMZ or rutin alone treatment. Moreover, immunoblotting analysis showed that TMZ activated JNK activity to induce protective response autophagy, which was blocked by rutin, resulting in decreased autophagy and increased apoptosis, suggesting that rutin enhances TMZ efficacy both in vitro and in vivo via inhibiting JNK-mediated autophagy in GBM. The combination rutin with TMZ may be a potentially useful therapeutic approach for GBM patient.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/patología , Glioblastoma/patología , Rutina/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Sinergismo Farmacológico , Humanos , Ratones , Ratones Desnudos , Temozolomida , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Cell Sci ; 126(Pt 2): 520-31, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23178943

RESUMEN

African trypanosomes have a single, membrane-bounded flagellum that is attached to the cell cortex by membrane adhesion proteins and an intracellular flagellum attachment zone (FAZ) complex. The coordinated assembly of flagellum and FAZ, during the cell cycle and the life cycle development, plays a pivotal role in organelle positioning, cell division and cell morphogenesis. To understand how the flagellum and FAZ assembly are coordinated, we examined the domain organization of the flagellum adhesion protein 1 (FLA1), a glycosylated, transmembrane protein essential for flagellum attachment and cell division. By immunoprecipitation of a FLA1-truncation mutant that mislocalized to the flagellum, a novel FLA1-binding protein (FLA1BP) was identified in procyclic Trypanosoma brucei. The interaction between FLA1 on the cell membrane and FLA1BP on the flagellum membrane acts like a molecular zipper, joining flagellum membrane to cell membrane and linking flagellum biogenesis to FAZ elongation. By coordinating flagellum and FAZ assembly during the cell cycle, morphology information is transmitted from the flagellum to the cell body.


Asunto(s)
Flagelos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Flagelos/genética , Glicosilación , Glicoproteínas de Membrana/genética , Morfogénesis , Biogénesis de Organelos , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética
10.
Brain Inj ; 28(12): 1594-601, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25093611

RESUMEN

BACKGROUND: Dexamethasone (DEXA) is commonly used to reduce brain swelling during neurosurgical procedures. DEXA, however, has many side-effects that can increase the risks of post-operative complications. In contrast, progesterone (PRO) has fewer side-effects and has been found to be neuroprotective on traumatic brain injury (TBI). Whether PRO may be used as an alternative to DEXA during routine procedures has not been fully explored. OBJECT: To compare the effects of DEXA and PRO on surgical brain injury (SBI). METHODS: Seventy-five adult male Sprague Dawley rats were randomized into five groups: (1) SBI + drug vehicle (peanut oil, 1 ml kg(-1)); (2) SBI + DEXA (1 mg kg(-1)); (3) SBI + low-dose PRO (10 mg kg(-1)); (4) SBI + high-dose PRO (20 mg kg(-1)); and (5) sham SBI + drug vehicle. Magnetic resonance imaging study and assessments of brain water content (BWC), blood-brain barrier (BBB) permeability, cellular inflammatory responses and matrix metalloproteinase 9 (MMP-9) expression were conducted. RESULTS: This model consistently resulted in increased BWC and BBB disruption. PRO reduced astrocyte and microglia responses and attenuated brain oedema with preservation of BBB. A significant down-regulation of MMP-9 expression occurred in the PRO 20 group. CONCLUSIONS: PRO is as effective as DEXA in reducing brain oedema and inflammation following SBI; 10 mg kg(-1) of PRO was demonstrated to be more effective in relieving acute cellular inflammatory responses.


Asunto(s)
Edema Encefálico/metabolismo , Lesiones Encefálicas/metabolismo , Dexametasona/farmacología , Glucocorticoides/farmacología , Inflamación/metabolismo , Procedimientos Neuroquirúrgicos/efectos adversos , Progesterona/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Western Blotting , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/inmunología , Lesiones Encefálicas/inmunología , Lesiones Encefálicas/cirugía , Modelos Animales de Enfermedad , Regulación hacia Abajo , Inflamación/tratamiento farmacológico , Masculino , Inhibidores de la Metaloproteinasa de la Matriz , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
11.
mBio ; 15(4): e0286423, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38456679

RESUMEN

Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE: Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.


Asunto(s)
Malaria , Parásitos , Plasmodium , Toxoplasma , Animales , Plasmodium falciparum/metabolismo , Tomografía con Microscopio Electrónico , Proteínas Protozoarias/metabolismo , Parásitos/metabolismo , Interacciones Huésped-Parásitos , Toxoplasma/metabolismo
12.
Neurobiol Dis ; 58: 123-31, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23726844

RESUMEN

Long non-coding RNAs (lncRNAs) represent the leading edge of cancer research, and have been implicated in cancer biogenesis and prognosis. We aimed to identify lncRNA signatures that have prognostic values in glioblastoma multiforme (GBM). Using a lncRNA-mining approach, we performed lncRNA expression profiling in 213 GBM tumors from The Cancer Genome Atlas (TCGA), randomly divided into a training (n=107) and a testing set (n=106). We analyzed the associations between lncRNA signatures and clinical outcome in the training set, and validated the findings in the testing set. We also validated the identified lncRNA signature in another two independent GBM data sets from Gene Expression Omnibus (GEO), which contained specimens from 68 and 101 patients, respectively. We identified a set of six lncRNAs that were significantly associated with the overall survival in the training set (P≤0.01). Based on this six-lncRNA signature, the training-set patients could be classified into high-risk and low-risk subgroups with significantly different survival (HR=2.13, 95% CI=1.38-3.29; P=0.001). The prognostic value of this six-lncRNA signature was confirmed in the testing set and the two independent data sets. Further analysis revealed that the prognostic value of this signature was independent of age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The identification of the prognostic lncRNAs indicates the potential roles of lncRNAs in GBM pathogenesis. This six-lncRNA signature may have clinical implications in the subclassification of GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Glioblastoma/genética , Glioblastoma/mortalidad , ARN Largo no Codificante/metabolismo , Factores de Edad , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/terapia , Guanina/análogos & derivados , Humanos , Estimación de Kaplan-Meier , Masculino , Análisis por Micromatrices , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , Factores de Tiempo
13.
Neurobiol Dis ; 48(1): 1-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22709987

RESUMEN

Glioma is the commonest form of primary brain tumor in adults with varying malignancy grades and histological subtypes. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding transcripts that have been shown to play important roles in cancer development. To discover novel tumor-related lncRNAs and determine their associations with glioma subtypes, we first applied a lncRNA classification pipeline to identify 1970 lncRNAs that were represented on Affymetrix HG-U133 Plus 2.0 array. We then analyzed the lncRNA expression patterns in a set of previously published glioma gene expression profiles of 268 clinical specimens, and identified sets of lncRNAs that were unique to different histological subtypes (astrocytic versus oligodendroglial tumors) and malignancy grades. These lncRNAs signatures were then subject to validation in another non-overlapping, independent data set that contained 157 glioma samples. This is the first reported study that correlates lncRNA expression profiles with malignancy grade and histological differentiation in human gliomas. Our findings indicate the potential roles of lncRNAs in the biogenesis, development and differentiation of gliomas, and provide an important platform for future studies.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Oligodendroglioma/genética , Fenotipo , ARN Largo no Codificante/genética , Adulto , Astrocitoma/patología , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , Humanos , Oligodendroglioma/patología
14.
J Neurooncol ; 107(1): 89-100, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21979894

RESUMEN

Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC(50)). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Biomarcadores de Tumor/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Apoptosis , Western Blotting , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Adhesión Celular , Ciclo Celular , Movimiento Celular , Proliferación Celular , Dacarbazina/farmacología , Electroforesis en Gel Bidimensional , Citometría de Flujo , Humanos , Etiquetado Corte-Fin in Situ , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temozolomida , Cicatrización de Heridas
15.
J Neurooncol ; 109(3): 467-75, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22763762

RESUMEN

Temozolomide (TMZ) is standard chemotherapy for glioblastoma multiforme (GBM). Intratumoral hypoxia is common in GBM and may be associated with the development of TMZ resistance. Oxygen therapy has previously been reported to potentiate the effect of chemotherapy in cancer. In this study, we investigated whether hyperoxia can enhance the TMZ-induced cytotoxicity of human GBM cells, and whether and how it would resensitize TMZ-resistant GBM cells to TMZ. TMZ-sensitive human GBM cells (D54-S and U87-S) were treated with TMZ to develop isogenic subclones of TMZ-resistant cells (D54-R and U87-R). All cell lines were then exposed to different oxygen levels (1, 21, 40, or 80 %), with or without concomitant TMZ treatment, before assessment of cell cytotoxicity and morphology. Cell death and survival pathways elicited by TMZ and/or hyperoxia were elucidated by western blotting. Our results showed that TMZ sensitivity of both chemo-sensitive and resistant cells was enhanced significantly under hyperoxia. At the cell line-specific optimum oxygen concentration (D54-R, 80 %; U87-R, 40 %), resistant cells had the same response to TMZ as the parent chemosensitive cells under normoxia via the caspase-dependent pathway. Both TMZ and hyperoxia were associated with increased phosphorylation of ERK p44/42 MAPK (Erk1/2), but to a lesser extent in D54-R cells, suggesting that Erk1/2 activity may be involved in regulation of hyperoxia and TMZ-mediated cell death. Overall, hyperoxia enhanced TMZ toxicity in GBM cells by induction of apoptosis, possibly via MAPK-related pathways. Induced hyperoxia is a potentially promising approach for treatment of TMZ-resistant GBM.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos/fisiología , Glioblastoma/metabolismo , Hiperoxia/metabolismo , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Dacarbazina/farmacología , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Temozolomida
16.
Oncol Lett ; 24(2): 264, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35765277

RESUMEN

Prolyl 4-hydroxylase beta polypeptide (P4HB) is a chaperone protein associated with temozolomide (TMZ) resistance through the unfolded protein response. Cancer cells with constitutive activation of endoplasmic reticulum stress and upregulation of P4HB have been observed to show resistance against chemotherapies. The present study focused on the evaluation of the prognostic value of P4HB in subtypes of glioma with or without O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. P4HB expression was assessed by immunohistochemical staining in 73 grade I-IV gliomas and its association with the clinicopathological data was determined. It was indicated that P4HB expression was significantly associated with several parameters, including age, tumour grade and the number of TMZ treatment cycles received. In the Kaplan-Meier analysis, P4HB expression was positively associated with risk of mortality and disease progression. In patients treated with TMZ, high P4HB expression was significantly associated with poor overall survival (OS) and progression-free survival (PFS). The association between MGMT promoter methylation and P4HB expression was also assessed. Patients with MGMTMethP4HBLow tumours had the most favourable PFS (48 months) among cases with various combinations of MGMT methylation status and P4HB expression. Multivariate analysis revealed that P4HB may be used as an independent prognostic indicator of OS, particularly in high-grade gliomas. The present study uncovered the potential role of P4HB in a nuanced pathological stratification during clinical decision-making with respect to MGMT promoter methylation status and TMZ treatment.

17.
Methods Mol Biol ; 2431: 181-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412277

RESUMEN

The development of compartmentalized neuron culture systems has been invaluable in the study of neuroinvasive viruses, including the alpha herpesviruses Herpes Simplex Virus 1 (HSV-1) and Pseudorabies Virus (PRV). This chapter provides updated protocols for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichamber cultures. In addition, we provide several illustrative examples of the types of experiments that are enabled by Campenot cultures: (1) Using fluorescence microscopy to investigate axonal outgrowth/extension through the chambers, and alpha herpesvirus infection, intracellular trafficking, and cell-cell spread via axons. (2) Using correlative fluorescence microscopy and cryo electron tomography to investigate the ultrastructure of virus particles trafficking in axons.


Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Suido 1 , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Herpesvirus Humano 1/fisiología , Neuronas
18.
PNAS Nexus ; 1(4): pgac183, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36329726

RESUMEN

Host cell invasion by intracellular, eukaryotic parasites within the phylum Apicomplexa is a remarkable and active process involving the coordinated action of apical organelles and other structures. To date, capturing how these structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to image the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through stimulation with calcium ionophore. Through the application of mixed-scale dense networks for image processing, we developed a highly efficient pipeline for annotation of tomograms, enabling us to identify and extract densities of relevant subcellular organelles and accurately analyze features in 3-D. The results reveal a dramatic change in the shape of the anteriorly located apical vesicle upon its apparent fusion with a rhoptry that occurs only in the stimulated parasites. We also present information indicating that this vesicle originates from the vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. We show that a rosette structure previously proposed to be involved in rhoptry secretion is associated with apical vesicles beyond just the most anterior one. This result, suggesting multiple vesicles are primed to enable rhoptry secretion, may shed light on the mechanisms Toxoplasma employs to enable repeated invasion attempts. Using the same approach, we examine Plasmodium falciparum merozoites and show that they too possess an apical vesicle just beneath a rosette, demonstrating evolutionary conservation of this overall subcellular organization.

19.
Front Oncol ; 11: 717793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970477

RESUMEN

Loss of heterozygosity (LOH) on chromosome 10 frequently occurs in gliomas. Whereas genetic loci with allelic deletion often implicate tumor suppressor genes, a putative tumor suppressor Adducin3 (ADD3) mapped to chromosome 10q25.2 was found to be preferentially downregulated in high-grade gliomas compared with low-grade lesions. In this study, we unveil how the assessment of ADD3 deletion provides clinical significance in glioblastoma (GBM). By deletion mapping, we assessed the frequency of LOH in forty-three glioma specimens using five microsatellite markers spanning chromosome 10q23-10qter. Data were validated in The Cancer Genome Atlas (TCGA) cohort with 203 GBM patients. We found that allelic loss in both D10S173 (ADD3/MXI1 locus) and D10S1137 (MGMT locus) were positively associated with tumor grading and proliferative index (MIB-1). However, LOH events at only the ADD3/MXI1 locus provided prognostic significance with a marked reduction in patient survival and appeared to have diagnostic potential in differentiating high-grade gliomas from low-grade ones. Furthermore, we showed progressive loss of ADD3 in six out of seven patient-paired gliomas with malignant progression, as well as in recurrent GBMs. These findings suggest the significance of ADD3/MXI1 locus as a promising marker that can be used to refine the LOH10q assessment. Data further suggest the role of ADD3 as a novel tumor suppressor, whereby the loss of ADD3 is indicative of a progressive disease that may at least partially account for rapid disease progression in GBM. This study revealed for the first time the downregulation of ADD3 on the genetic level resulting from copy number deletion.

20.
J Proteome Res ; 9(1): 70-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19522540

RESUMEN

Hepatocellular carcinoma (HCC) is a major liver malignancy possessing a high mortality rate and is particularly prevalent in China and Asia. While surgery is the most effective treatment for liver tumor, about 80% of HCC patients are inoperable at presentation and die early due to late diagnosis. For early cancer detection, we employed a proteomic expression profiling approach to identify biomarkers for early stages of HCC and subsequently assessed the clinical feasibility of a novel marker in plasma. Frozen liver tissues from a retrospective cohort of 75 liver patients (39 HCCs, 20 cirrhosis, and 16 nondiseased subjects) were subjected to proteome-wide expression profiling by 2-DE. MALDI-TOF/TOF was used to identify differentially expressed proteins, which were further confirmed by immunoblotting, qPCR, and immunohistochemistry. Conventional RT-PCR was employed to further analyze the abundance of selected biomarker at mRNA level in a separate cohort of 63 plasma samples (35 HCCs, 16 liver cirrhosis, 12 healthy individuals). We successfully identified lamin B1 (LMNB1) that was significantly upregulated in HCC tumors and present in patients' plasma. LMNB1 functions in nuclear envelope lamina and possesses a transcriptional coregulatory activity having an important role in DNA replication, cellular aging, and stress responses. Clinically, the expression level of lamin B1 correlated positively with tumor stages, tumor sizes, and number of nodules. Our findings further showed elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. In conclusion, lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma, and warrants further clinical investigation.


Asunto(s)
Biomarcadores de Tumor/sangre , Lamina Tipo B/sangre , Neoplasias Hepáticas/sangre , Adulto , Análisis de Varianza , Biomarcadores de Tumor/genética , Femenino , Humanos , Lamina Tipo B/genética , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , ARN Mensajero/sangre , ARN Mensajero/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA