Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2302969, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452511

RESUMEN

The first-line treatment for ectopic pregnancy (EP), the chemotherapeutic methotrexate (MTX), has a failure rate of more than 10%, which can lead to severe complications or death. Inadequate accumulation of administered MTX at the ectopic implantation site significantly contributes to therapeutic failure. This study reports the first glutathione-responsive polymersomes for efficient delivery of MTX to the implantation site and its triggered release in placental cells. Fluorescence and photoacoustic imaging have confirmed that the developed polymersomes preferentially accumulate after systemic administration in the implantation site of pregnant mice at early gestational stages. The high concentrations of intracellular glutathione (GSH) reduce an incorporated disulfide bond within polymersomes upon internalization into placental cells, resulting in their disintegration and efficient drug release. Consequently, MTX delivered by polymersomes induces pregnancy demise in mice, as opposed to free MTX at the same dose regimen. To achieve the same therapeutic efficacy with free MTX, a sixfold increase in dosage is required. In addition, mice successfully conceive and birth healthy pups following a prior complete pregnancy demise induced by methotrexate polymersomes. Therefore, the developed MTX nanomedicine can potentially improve EP management and reduce associated mortality rates and related cost.

2.
Small ; 18(44): e2204436, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36098251

RESUMEN

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Caquexia/tratamiento farmacológico , Caquexia/metabolismo , Folistatina/metabolismo , Folistatina/farmacología , Folistatina/uso terapéutico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Neoplasias Ováricas/complicaciones , Neoplasias Ováricas/terapia , Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA