Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602511

RESUMEN

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

2.
J Chem Inf Model ; 63(9): 2707-2718, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37074047

RESUMEN

Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 µM. The most active compound 1 showed an IC50 value of 0.42 µM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 µM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Girasa de ADN/química , Adenilil Imidodifosfato/uso terapéutico , Adenosina Trifosfatasas/química , Células CACO-2 , Antituberculosos/farmacología , Antituberculosos/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/uso terapéutico , ADN
3.
Proteins ; 90(3): 898-904, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677871

RESUMEN

3-Nitropropanoic acid (3NP), a bioactive fungal natural product, was previously demonstrated to inhibit growth of Mycobacterium tuberculosis. Here we demonstrate that 3NP inhibits the 2-trans-enoyl-acyl carrier protein reductase (InhA) from Mycobacterium tuberculosis with an IC50 value of 71 µM, and present the crystal structure of the ternary InhA-NAD+ -3NP complex. The complex contains the InhA substrate-binding loop in an ordered, open conformation with Tyr158, a catalytically important residue whose orientation defines different InhA substrate/inhibitor complex conformations, in the "out" position. 3NP occupies a hydrophobic binding site adjacent to the NAD+ cofactor and close to that utilized by the diphenyl ether triclosan, but binds predominantly via electrostatic and water-mediated hydrogen-bonding interactions with the protein backbone and NAD+ cofactor. The identified mode of 3NP binding provides opportunities to improve inhibitory activity toward InhA.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/química , Nitrocompuestos/química , Oxidorreductasas/antagonistas & inhibidores , Propionatos/química , Sitios de Unión , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , NAD/química , Éteres Fenílicos/química , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
4.
J Chem Inf Model ; 62(7): 1680-1690, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35347987

RESUMEN

Mycobacterium tuberculosis DNA gyrase manipulates the DNA topology using controlled breakage and religation of DNA driven by ATP hydrolysis. DNA gyrase has been validated as the enzyme target of fluoroquinolones (FQs), second-line antibiotics used for the treatment of multidrug-resistant tuberculosis. Mutations around the DNA gyrase DNA-binding site result in the emergence of FQ resistance in M. tuberculosis; inhibition of DNA gyrase ATPase activity is one strategy to overcome this. Here, virtual screening, subsequently validated by biological assays, was applied to select candidate inhibitors of the M. tuberculosis DNA gyrase ATPase activity from the Specs compound library (www.specs.net). Thirty compounds were identified and selected as hits for in vitro biological assays, of which two compounds, G24 and G26, inhibited the growth of M. tuberculosis H37Rv with a minimal inhibitory concentration of 12.5 µg/mL. The two compounds inhibited DNA gyrase ATPase activity with IC50 values of 2.69 and 2.46 µM, respectively, suggesting this to be the likely basis of their antitubercular activity. Models of complexes of compounds G24 and G26 bound to the M. tuberculosis DNA gyrase ATP-binding site, generated by molecular dynamics simulations followed by pharmacophore mapping analysis, showed hydrophobic interactions of inhibitor hydrophobic headgroups and electrostatic and hydrogen bond interactions of the polar tails, which are likely to be important for their inhibition. Decreasing compound lipophilicity by increasing the polarity of these tails then presents a likely route to improving the solubility and activity. Thus, compounds G24 and G26 provide attractive starting templates for the optimization of antitubercular agents that act by targeting DNA gyrase.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Adenosina Trifosfatasas , Adenosina Trifosfato , Antituberculosos/química , Antituberculosos/farmacología , Girasa de ADN/química , Humanos , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Tuberculosis/tratamiento farmacológico
5.
J Chem Inf Model ; 62(24): 6508-6518, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35994014

RESUMEN

Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 µg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 µM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 µM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antituberculosos/farmacología , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Fosforilación
6.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055133

RESUMEN

Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 µM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 2/fisiología , Micromonospora/química , Péptidos/farmacología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Chlorocebus aethiops , Citomegalovirus/efectos de los fármacos , Citomegalovirus/fisiología , Prepucio/citología , Prepucio/virología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2/efectos de los fármacos , Humanos , Masculino , Estructura Molecular , Péptidos/química , Péptidos/aislamiento & purificación , Células Vero , Liberación del Virus/efectos de los fármacos
7.
Org Biomol Chem ; 19(34): 7390-7402, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34296730

RESUMEN

Here we reveal a simple generation of deuterium halide (DX) from common and inexpensive reagents readily available in a synthetic chemistry laboratory, i.e. prenyl-, allyl-, and propargyl halides, under mild conditions. We envisaged that in situ generation of an acid, deuterium halide, would be useful for acid-catalyzed reactions and could be employed for organocatalytic deuteration. The present work reports a metal-free method for deuterium labeling covering a broad range of substrate including phenolic compounds (i.e. flavonoids and stilbenes), indoles, pyrroles, carbonyl compounds, and steroids. This method was also applied for commonly used drugs such as loxoprofen, haloperidol, stanolone, progesterone, androstenedione, donepezil, ketorolac, adrenosterone, cortisone, pregnenolone, and dexamethasone. A gram-scale chromatography-free synthesis of some deuterated compounds is demonstrated in this work. This work provides a simple, clean and by-product-free, site-selective deuteration, and the deuterated products are obtained without chromatographic separation. When applying these initiators for other acid-catalyzed reactions, the deuterium isotope effects of DX may provide products which are different from those obtained from reactions using common acids. Although the mechanism of the spontaneous transformation of prenyl halides to acid is unclear, this overlooked chemistry may be useful for many reactions.

8.
J Chem Inf Model ; 60(1): 226-234, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31820972

RESUMEN

The enoyl-acyl carrier protein reductase InhA of Mycobacterium tuberculosis is an attractive, validated target for antituberculosis drug development. Moreover, direct inhibitors of InhA remain effective against InhA variants with mutations associated with isoniazid resistance, offering the potential for activity against MDR isolates. Here, structure-based virtual screening supported by biological assays was applied to identify novel InhA inhibitors as potential antituberculosis agents. High-speed Glide SP docking was initially performed against two conformations of InhA differing in the orientation of the active site Tyr158. The resulting hits were filtered for drug-likeness based on Lipinski's rule and avoidance of PAINS-like properties and finally subjected to Glide XP docking to improve accuracy. Sixteen compounds were identified and selected for in vitro biological assays, of which two (compounds 1 and 7) showed MIC of 12.5 and 25 µg/mL against M. tuberculosis H37Rv, respectively. Inhibition assays against purified recombinant InhA determined IC50 values for these compounds of 0.38 and 0.22 µM, respectively. A crystal structure of the most potent compound, compound 7, bound to InhA revealed the inhibitor to occupy a hydrophobic pocket implicated in binding the aliphatic portions of InhA substrates but distant from the NADH cofactor, i.e., in a site distinct from those occupied by the great majority of known InhA inhibitors. This compound provides an attractive starting template for ligand optimization aimed at discovery of new and effective compounds against M. tuberculosis that act by targeting InhA.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Antituberculosos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Descubrimiento de Drogas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Reproducibilidad de los Resultados , Relación Estructura-Actividad
9.
Chem Biodivers ; 15(3): e1700537, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29325221

RESUMEN

New naphthalene derivatives (1 and 2) and a new isomer (3) of ventilagolin, together with known anthraquinones, chrysophanol (4), physcion or emodin 3-methyl ether (5), and emodin (6), were isolated from vines of Ventilago denticulata. The isolated compounds exhibited cytotoxic activity with IC50 values of 1.15 - 40.54 µg/ml. Compounds 1 - 3 selectively exhibited weak antibacterial activity (MIC values of 200.0 - 400.0 µg/ml), while emodin (6) displayed moderate antibacterial activity with MIC value of 25.0 µg/ml. The isolated compounds showed nitric oxide and DPPH radical scavenging activities. Compounds 1 - 3 and 6 exhibited weak xanthine oxidase inhibitory activity, while emodin (6) acted as an aromatase inhibitor with the IC50 value of 10.1 µm. Compounds 1 and 2 exhibited phosphodiesterase 5 inhibitory activity with IC50 values of 8.28 µm and 6.48 µm, respectively.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Naftalenos/farmacología , Quinonas/farmacología , Rhamnaceae/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Naftalenos/química , Naftalenos/aislamiento & purificación , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Quinonas/química , Quinonas/aislamiento & purificación , Relación Estructura-Actividad , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo
10.
Mar Drugs ; 13(6): 3567-80, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26058010

RESUMEN

Four new sesquiterpene lactones (3, 4, 6 and 7) and three known compounds, purpuride (1), berkedrimane B (2) and purpuride B (5), were isolated from the marine fungus, Talaromyces minioluteus (Penicillium minioluteum). New compounds were drimane sesquiterpenes conjugated with N-acetyl-l-valine, and their structures were elucidated by analysis of spectroscopic data, as well as by single crystal X-ray analysis. The isolated compounds could not inhibit the apoptosis-regulating enzyme, caspase-3, while three of the compounds (2, 3 and 7) exhibited weak cytotoxic activity.


Asunto(s)
Lactonas/farmacología , Penicillium/química , Sesquiterpenos/farmacología , Talaromyces/química , Aminoácidos/química , Cristalografía por Rayos X , Humanos , Lactonas/química , Lactonas/aislamiento & purificación , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Análisis Espectral
11.
Heliyon ; 10(3): e24983, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318047

RESUMEN

Renal fibrosis is a pathological feature of chronic kidney disease (CKD), progressing toward end-stage kidney disease (ESKD). The aim of this study is to investigate the therapeutic potential of altenusin, a farnesoid X receptor (FXR) agonist derived from fungi, on renal fibrosis. The effect of altenusin was determined (i) in vitro using the transforming growth factor ß1 (TGF-ß1)-induced epithelial to mesenchymal transition (EMT) of human renal proximal tubular cells and (ii) in vivo using mouse unilateral ureteral obstruction (UUO). The findings revealed that incubation of 10 ng/ml TGF-ß1 promotes morphological change in RPTEC/TERT1 cells, a human renal proximal tubular cell line, from epithelial to fibroblast-like cells. TGF-ß1 markedly increased EMT markers namely α-smooth muscle actin (α-SMA), fibronectin, and matrix metalloproteinase 9 (MMP-9), while decreased the epithelial marker E-cadherin. Co-incubation TGF-ß1 with altenusin preserved the epithelial characteristics of the renal epithelial cells by antagonizing TGF-ß/Smad signaling pathway, specifically a decreased phosphorylation of Smad2/3 with an increased level of Smad7. Interestingly, the antagonizing effect of altenusin does not require FXR activation. Moreover, altenusin could reverse TGF-ß1-induced fibroblast-like cells to epithelial-like cells. Treatment on UUO mice with 30 mg/kg altenusin significantly reduced the expression of α-SMA, fibronectin, and collagen type 1A1 (COL1A1). The reduction in the renal fibrosis markers is correlated with the decreased phosphorylation of Smad2/3 levels but does not improve E-cadherin protein expression. Collectively, altenusin reduces EMT in human renal proximal tubular cells and renal fibrosis by antagonizing the TGF-ß/Smad signaling pathway.

12.
Int J Biol Macromol ; 273(Pt 1): 133059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866269

RESUMEN

Kratom, Mitragyna speciosa, is one of the most popular herbs in the West and Southeast Asia. A number of previous works have focused on bioactive alkaloids in this plant; however, non-alkaloids have never been investigated for their biological activities. Antiviral and virucidal assays of a methanol leaf extract of Kratom, M. speciosa, revealed that a crude extract displayed virucidal activity against the SARS-CoV-2. Activity-guided isolation of a methanol leaf extract of Kratom led to the identification of B-type procyanidin condensed tannins of (-)-epicatechin as virucidal compounds against SARS-CoV-2. The fraction containing condensed tannins exhibited virucidal activity with an EC50 value of 8.38 µg/mL and a selectivity index (SI) value >23.86. LC-MS/MS analysis and MALDI-TOF MS identified the structure of the virucidal compounds in Kratom as B-type procyanidin condensed tannins, while gel permeation chromatograph (GPC) revealed weight average molecular weight of 238,946 Da for high molecular-weight condensed tannins. In addition to alkaloids, (-)-epicatechin was found as a major component in the leaves of M. speciosa, but it did not have virucidal activity. Macromolecules of (-)-epicatechin, i.e., procyanidin condensed tannins, showed potent virucidal activity against SARS-CoV-2, suggesting that the high molecular weights of these polyphenols are important for virucidal activity.


Asunto(s)
Antivirales , Biflavonoides , Catequina , Mitragyna , Extractos Vegetales , Hojas de la Planta , Proantocianidinas , SARS-CoV-2 , Catequina/química , Catequina/farmacología , Proantocianidinas/química , Proantocianidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Mitragyna/química , Biflavonoides/farmacología , Biflavonoides/química , Hojas de la Planta/química , Células Vero , Chlorocebus aethiops , Humanos , Animales , COVID-19/virología , Espectrometría de Masas en Tándem , Tratamiento Farmacológico de COVID-19
13.
ACS Omega ; 8(32): 29615-29624, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599981

RESUMEN

Morinda citrifolia is a medicinal plant that has been traditionally used in various therapeutic applications. All parts of M. citrifolia including fruits, leaves, stems, roots, and flowers contain various biologically active phytochemicals. This study aimed to evaluate the antitubercular, antibacterial, and antioxidant activities of M. citrifolia root extracts and spectroscopically analyze the bioactive metabolites. M. citrifolia root extracts were prepared via maceration. The minimum inhibitory concentration (MIC) for antitubercular activity, the inhibition zone for antibacterial activity, and the antioxidant activities in terms of half-maximal inhibitory concentration (IC50) values were determined. 1H-NMR, RP-HPLC, and UHPLC-QQQ-MS analyses were performed to evaluate the secondary metabolites. The results showed that the dichloromethane root extract exhibited relatively good inhibition of M. tuberculosis with an MIC value of 50 µg/mL. All extracts were mostly active against five tested bacterial strains. The ethanolic and dichloromethane root extracts showed the highest antioxidant power against DPPH (IC50 = 0.82 mg/mL) and NO (IC50 = 0.64 mg/mL) radicals, respectively. The 1H-NMR-based screening of the secondary metabolites of all M. citrifolia root extracts confirmed the presence of triterpenes, steroids, phenolics, flavonoids, tannins, and anthraquinones as major bioactive components. Alizarin and scopoletin were detected in the extracts via UHPLC-QQQ-MS, and the alizarin (0.552-3.227 g/100 g dry weight) and scopoletin (0.092-0.554 g/100 g dry weight) contents were quantified via RP-HPLC. The antimicrobial and antioxidant activities of M. citrifolia root extracts and the identification of the main bioactive ingredients are the initial studies that can be beneficial for further in vivo studies and biomedical applications of its bioactive compounds.

14.
Bioorg Med Chem Lett ; 22(8): 2902-5, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22418278

RESUMEN

Bisbenzylisoquinoline alkaloids, tiliacorinine (1), 2'-nortiliacorinine (2), and tiliacorine (3), isolated from the edible plant, Tiliacora triandra, as well as a synthetic derivative, 13'-bromo-tiliacorinine (4), were tested against 59 clinical isolates of multidrug-resistant Mycobacterium tuberculosis (MDR-MTB). The alkaloids 1-4 showed MIC values ranging from 0.7 to 6.2 µg/ml, but they exhibited the MIC value at 3.1 µg/ml against most MDR-MTB isolates. The present work suggests that bisbenzylisoquinoline alkaloids are potential new chemical scaffolds for antimycobacterial activity.


Asunto(s)
Alcaloides/química , Antituberculosos , Bencilisoquinolinas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Menispermaceae/química , Mycobacterium tuberculosis/efectos de los fármacos , Alcaloides/farmacología , Antituberculosos/química , Antituberculosos/farmacología , Bencilisoquinolinas/química , Bencilisoquinolinas/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Extractos Vegetales/farmacología , Raíces de Plantas/química , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
15.
Planta Med ; 78(6): 582-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22307935

RESUMEN

Three new depsidones ( 1, 3, and 4), a new diaryl ether ( 5), and a new natural pyrone ( 9) (synthetically known), together with three known depsidones, nidulin ( 6), nornidulin ( 7), and 2-chlorounguinol ( 8), were isolated from the marine-derived fungus ASPERGILLUS UNGUIS CRI282-03. Aspergillusidone C ( 4) showed the most potent aromatase inhibitory activity with the IC (50) value of 0.74 µM, while depsidones 1, 3, 6- 8 inhibited aromatase with IC (50) values of 1.2-11.2 µM. It was found that the structural feature of depsidones, not their corresponding diaryl ether derivatives (e.g. 5), was important for aromatase inhibitory activity. Aspergillusidones A ( 1) and B ( 3) showed radical scavenging activity in the XXO assay with IC (50) values of 16.0 and < 15.6 µM, respectively. Compounds 1 and 3- 7 were mostly inactive or showed only weak cytotoxic activity against HuCCA-1, HepG2, A549, and MOLT-3 cancer cell lines.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aspergillus/química , Depsidos/química , Depsidos/farmacología , Depuradores de Radicales Libres/farmacología , Lactonas/farmacología , Oxepinas/química , Animales , Inhibidores de la Aromatasa/química , Inhibidores de la Aromatasa/aislamiento & purificación , Aspergillus/clasificación , Aspergillus/aislamiento & purificación , Secuencia de Bases , Línea Celular Tumoral , Supervivencia Celular , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Depsidos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Humanos , Concentración 50 Inhibidora , Lactonas/química , Lactonas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Oxepinas/aislamiento & purificación , Oxepinas/farmacología , Poríferos/microbiología , Análisis de Secuencia de ADN
16.
Toxicol Rep ; 4: 165-171, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959637

RESUMEN

Naturally occurring depsidones from the marine fungus Aspergillus unguis are known to have substantial anti-cancer activity, but their mechanism of action remains elusive. The purpose of this study was to examine the anti-aromatase activity of two common depsidones, unguinol and aspergillusidone A, in a co-culture system of human primary breast adipose fibroblasts and hormonal responsive T47D breast tumor cells. Using this in vitro model it was shown that these depsidones inhibit the growth of T47D tumor cells most likely via inhibition of aromatase (CYP19) activity. The IC50 values of these depisidones were compared with the aromatase inhibitors letrozole and exemestane. Letrozole and exemestane had IC50 values of respectively, 0.19 and 0.14 µM, while those for Unguinol and Aspergillusidone A were respectively, 9.7 and 7.3 µM. Our results indicate that among the depsidones there maybe aromatase inhibitors with possible pharmacotherapeutical relevance.

17.
Eur J Med Chem ; 89: 1-12, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25462220

RESUMEN

Various classes of natural products and synthetic compounds were tested against reference strains and clinical multidrug resistant isolates of Mycobacterium tuberculosis. Vermelhotin (19), a natural tetramic acid from fungi, was the most active toward clinical MDR TB isolates (MIC 1.5-12.5 µg/mL). Synthetic compounds (i.e. benzoxazocines, coumarins, chromenes, and pyrrolodiquinoline derivatives) were prepared by green chemistry approaches. Under microwave irradiation, a one-pot synthesis of pyrrolodiquinoline 85 was achieved by homocoupling of 1-methylquinolinium iodide; the structure of 85 was confirmed by single-crystal X-ray analysis. Compound 85 and its derivative 86 exhibited potent anti-tubercular activity (MIC 0.3-6.2 µg/mL) against clinical MDR TB isolates, and they displayed weak cytotoxicity toward normal cell line. The scaffold of 85 and 86 is potential for antimycobacterial activity.


Asunto(s)
Antituberculosos/farmacología , Productos Biológicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Pirrolidinas/farmacología , Quinolinas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/aislamiento & purificación , Pirrolidinas/síntesis química , Pirrolidinas/química , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
18.
Planta Med ; 74(1): 69-72, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18203053

RESUMEN

Five metabolites, ( Z)-6-benzylidene-3-hydroxymethyl-1,4-dimethyl-3-methylsulfanylpiperazine-2,5-dione ( 1), (3S,3'R)-3-(3'-hydroxybutyl)-7-methoxyphthalide ( 2), ( S)-3-butyl-7-methoxyphthalide ( 3), (3R,6R)-bisdethiodi(methylthio)hyalodendrin ( 4), and bis- N-norgliovictin ( 5), were isolated from the culture broth of the marine derived fungus of the order Pleosporales strain CRIF2. Compounds 1 and 2 are new fungal metabolites, while 3 was isolated for the first time as a natural product. Compounds 1, 3, and 4 exhibited only weak cytotoxic activity, while 5 was inactive at 50 microg/mL.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Hongos , Fitoterapia , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Benzofuranos/administración & dosificación , Benzofuranos/química , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos , Dicetopiperazinas/administración & dosificación , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Dicetopiperazinas/uso terapéutico , Humanos , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA