Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Arch Biochem Biophys ; 645: 100-106, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29574051

RESUMEN

Dimethylsulfoniopropionate (DMSP) is one of the most abundant molecules on earth and plays a pivotal role in the marine sulfur cycle. DMSP is believed to be synthesized from methionine by a four-step reaction pathway in marine algae. The genes responsible for biosynthesis of DMSP remain unidentified. A diatom Thalassiosira pseudonana CCMP1335 is an important component of marine ecosystems and contributes greatly to the world's primary production. In this study, through genome search, in vivo activity and functional studies of cDNA products, a gene encoding Thalassiosira methyltransferase (TpMMT) which catalyzes the key step of DMSP synthesis formation of 4-methylthio-2-hydroxybutyrate (DMSHB) from 4-methylthio-2-oxobutyrate (MTHB), was identified. The amino acid sequence of TpMMT was homologous to the methyltransferase from Phaeodactylum tricornutum CCAP 1055/1, but not the recently identified bacterium gene. High salinity and nitrogen limitation stresses caused the increase of DMSP content and TpMMT protein in Thalassiosira. In addition to TpMMT, the enzyme activities for the first three steps could be detected and enhanced under high salinity, suggesting the importance of four-step DMSP synthetic pathway in Thalassiosira.


Asunto(s)
Diatomeas/genética , Diatomeas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Compuestos de Sulfonio/metabolismo , Secuencia de Aminoácidos , Diatomeas/efectos de los fármacos , Diatomeas/enzimología , Concentración de Iones de Hidrógeno , Metionina/análogos & derivados , Metionina/metabolismo , Metiltransferasas/química , Nitrógeno/farmacología , Salinidad , Estrés Salino/genética , Temperatura , Regulación hacia Arriba
2.
Arch Microbiol ; 199(1): 29-35, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27443667

RESUMEN

Serine hydroxymethyltransferase (SHMT) catalyzes the conversion of serine to glycine and provides activated one-carbon units required for synthesis of nucleic acids, proteins and numerous biological compounds. SHMT is involved in photorespiratory pathway of oxygenic photosynthetic organisms. Accumulating evidence revealed that SHMT plays vital role for abiotic stresses such as low CO2 and high salinity in plants, but its role in cyanobacteria remains to be clarified. In this study, we examined to overexpress the SHMT from halotolerant cyanobacterium Aphanothece halophytica in freshwater cyanobacterium, Synechococcus elongatus PCC7942. The transformed cells did not show an obvious phenotype under non-stress condition, but exhibited more tolerance to salinity than the control cells harboring vector only under high salinity. Elevated levels of enzymes in phosphorylated serine biosynthetic pathway and photorespiration pathway were observed in the transformed cells. Glycine level was also increased in the transformed cells. Physiological roles of SHMT for salt tolerance were discussed.


Asunto(s)
Proteínas Bacterianas/genética , Vías Biosintéticas , Glicina Hidroximetiltransferasa/genética , Serina/biosíntesis , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Agua Dulce/microbiología , Glicina Hidroximetiltransferasa/metabolismo , Fotosíntesis , Tolerancia a la Sal , Synechococcus/enzimología , Synechococcus/aislamiento & purificación , Synechococcus/metabolismo
3.
Plant Cell Rep ; 35(6): 1273-86, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26993328

RESUMEN

KEY MESSAGE: Differentially expressed antioxidant enzymes, amino acids and proteins in contrasting rice genotypes, and co-location of their genes in the QTLs mapped using bi-parental population, indicated their role in salt tolerance. Soil salinity is a major environmental constraint limiting rice productivity. Salt-tolerant 'CSR27', salt-sensitive 'MI48'and their extreme tolerant and sensitive recombinant inbred line (RIL) progenies were used for the elucidation of salt stress tolerance metabolic pathways. Salt stress-mediated biochemical and molecular changes were analyzed in the two parents along with bulked-tolerant (BT) and bulked-sensitive (BS) extreme RILs. The tolerant parent and BT RILs suffered much lower reduction in the chlorophyll as compared to their sensitive counterparts. Activities of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) and non-enzymatic antioxidant ascorbic acid were much higher in salt-stressed CSR27 and BT RILs than MI48 and BS RILs. Further, the tolerant lines showed significant enhancement in the levels of amino acids methionine and proline in response to salt stress in comparison to the sensitive lines. Similarly, the tolerant genotypes showed minimal reduction in cysteine content whereas sensitive genotypes showed a sharp reduction. Real time PCR analysis confirmed the induction of methionine biosynthetic pathway (MBP) enzymes cystathionine-ß synthase (CbS), S-adenosyl methionine synthase (SAMS), S-adenosyl methionine decarboxylase (SAMDC) and serine hydroxymethyl transferase (SHMT) genes in tolerant lines, suggesting potential role of the MBP in conferring salt tolerance in rice variety CSR27. Proteome profiling also confirmed higher expression of SOD, POD and plastidic CbS and other proteins in the tolerant lines, whose genes were co-located in the QTL intervals for salt tolerance mapped in the RIL population. The study signifies integrated biochemical-molecular approach for identifying salt tolerance genes for genetic improvement for stress tolerant rice varieties.


Asunto(s)
Oryza/genética , Tolerancia a la Sal/genética , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Peroxidación de Lípido , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Oryza/fisiología , Fotosíntesis , Sitios de Carácter Cuantitativo/genética , Tolerancia a la Sal/fisiología
4.
Biosci Biotechnol Biochem ; 79(2): 230-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25421789

RESUMEN

Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed.


Asunto(s)
Alanina/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/fisiología , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Glicina/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Clonación Molecular , Cianobacterias/genética , Cianobacterias/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Cinética , Nitrógeno/deficiencia , Salinidad , Sodio/metabolismo , Estrés Fisiológico , Especificidad por Sustrato , Regulación hacia Arriba
5.
Biosci Biotechnol Biochem ; 79(7): 1119-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25703935

RESUMEN

Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Chlorella vulgaris/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Compuestos de Anilina/metabolismo , Proteínas de Unión al Calcio/genética , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/genética , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hemo/química , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Triglicéridos/metabolismo
6.
Curr Microbiol ; 71(1): 115-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25971893

RESUMEN

Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.


Asunto(s)
Alcanos/metabolismo , Cianobacterias/metabolismo , Ingeniería Metabólica , Presión Osmótica , Estrés Fisiológico , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Sales (Química)/metabolismo
7.
Appl Environ Microbiol ; 80(5): 1763-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375141

RESUMEN

Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 µmol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source.


Asunto(s)
Vías Biosintéticas/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Glicina/análogos & derivados , Presión Osmótica , Sales (Química)/metabolismo , Cianobacterias/efectos de los fármacos , Cianobacterias/efectos de la radiación , Ciclohexanoles , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Perfilación de la Expresión Génica , Glicina/biosíntesis , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Transcripción Genética , Rayos Ultravioleta , Regulación hacia Arriba
8.
J Biol Chem ; 286(12): 10169-76, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21262962

RESUMEN

Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium that can grow in media of up to 3.0 m NaCl and pH 11. Here, we show that in addition to a typical H(+)-ATP synthase, Aphanothece halophytica contains a putative F(1)F(0)-type Na(+)-ATP synthase (ApNa(+)-ATPase) operon (ApNa(+)-atp). The operon consists of nine genes organized in the order of putative subunits ß, ε, I, hypothetical protein, a, c, b, α, and γ. Homologous operons could also be found in some cyanobacteria such as Synechococcus sp. PCC 7002 and Acaryochloris marina MBIC11017. The ApNa(+)-atp operon was isolated from the A. halophytica genome and transferred into an Escherichia coli mutant DK8 (Δatp) deficient in ATP synthase. The inverted membrane vesicles of E. coli DK8 expressing ApNa(+)-ATPase exhibited Na(+)-dependent ATP hydrolysis activity, which was inhibited by monensin and tributyltin chloride, but not by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The Na(+) ion protected the inhibition of ApNa(+)-ATPase by N,N'-dicyclohexylcarbodiimide. The ATP synthesis activity was also observed using the Na(+)-loaded inverted membrane vesicles. Expression of the ApNa(+)-atp operon in the heterologous cyanobacterium Synechococcus sp. PCC 7942 showed its localization in the cytoplasmic membrane fractions and increased tolerance to salt stress. These results indicate that A. halophytica has additional Na(+)-dependent F(1)F(0)-ATPase in the cytoplasmic membrane playing a potential role in salt-stress tolerance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/enzimología , Operón/fisiología , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Cianobacterias/genética , Escherichia coli/enzimología , Escherichia coli/genética , Hidrólisis/efectos de los fármacos , Ionóforos/farmacología , Monensina/farmacología , Mutación , ATPasas de Translocación de Protón/genética , Sodio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Compuestos de Trialquiltina/farmacología
9.
Arch Microbiol ; 194(11): 909-14, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22707090

RESUMEN

Photosynthetic, nitrogen-fixing Anabaena strains play an important role in the carbon and nitrogen cycles in tropical paddy fields although they are salt sensitive. Improvement in salt tolerance of Anabaena cells by expressing glycine betaine-synthesizing genes is an interesting subject. Due to the absence of choline in cyanobacteria, choline-oxidizing enzyme could not be used for the synthesis of glycine betaine. Here, the genes encoding glycine-sarcosine and dimethylglycine methyltransferases (ApGSMT-DMT) from a halotolerant cyanobacterium Aphanothece halophytica were expressed in Anabaena sp. strain PCC7120. The ApGSMT-DMT-expressing Anabaena cells were capable of synthesizing glycine betaine without the addition of any substance. The accumulation level of glycine betaine in Anabaena increased with rise of salt concentration. The transformed cells exhibited an improved growth and more tolerance to salinity than the control cells. The present work provides a prospect to engineer a nitrogen-fixing cyanobacterium having enhanced tolerance to stress by manipulating de novo synthesis of glycine betaine.


Asunto(s)
Anabaena/genética , Betaína/metabolismo , Cianobacterias/genética , Tolerancia a la Sal/genética , Anabaena/metabolismo , Cianobacterias/efectos de los fármacos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Cloruro de Sodio/farmacología , Transformación Genética
10.
Biosci Biotechnol Biochem ; 76(9): 1702-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22972333

RESUMEN

Glutamate is a major free amino acid in cyanobacteria, but its transport properties remain largely unknown. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica, contained a sodium dependent glutamate transporter (ApGltS). The deduced amino acid sequence of ApGltS exhibited low homology (18-19% identity) to GltS from Synechocystis sp. PCC 6803 (slr1145) and Escherichia coli. The predicted ApGltS consisted of 476 amino acid residues with a molecular weight of 50,976 Da. As analysed by hydropathy profiling, ApGltS contains 11 transmembrane segments. The ApgltS gene was isolated and expressed in E. coli ME9107, which is deficient in glutamate uptake. ME9107, expressing ApGltS, took up glutamate and its rates increased with increasing concentrations of NaCl. Kinetics studies revealed that ApGltS is a high-affinity glutamate transporter with a K(m) of about 5 µM. The presence of 0.5 M NaCl in the assay medium increased V(max) by about 3-fold. Competition experiments revealed that glutamate, glutamine, aspartate, and asparagine inhibited glutamate uptake. The level of mRNA for ApgltS was higher in A. halophytica grown at high salinity. Under high salinity conditions supplemented with glutamate, A. halophytica showed a significant increase in intracellular glycine betaine.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Ácido Glutámico/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas Bacterianas/genética , Betaína/metabolismo , Cianobacterias/efectos de los fármacos , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Datos de Secuencia Molecular , Peso Molecular , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Tolerancia a la Sal/fisiología , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Simportadores/genética , Simportadores/metabolismo
11.
Appl Environ Microbiol ; 77(15): 5178-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21666012

RESUMEN

Alkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned the phoD gene from a halotolerant cyanobacterium, Aphanothece halophytica (phoD(Ap)). The deduced protein, PhoD(Ap), contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoD(Ap) enzyme was activated by Ca(2+) and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoD(Ap) in a transformed cyanobacterium. Expression of the phoD(Ap) gene in A. halophytica cells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest that A. halophytica cells possess a PhoD that participates in the assimilation of P under salinity stress.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Cianobacterias/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Estrés Fisiológico/genética , Fosfatasa Alcalina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Calcio , Cianobacterias/genética , Expresión Génica , Datos de Secuencia Molecular , Organofosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Fósforo/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salinidad , Cloruro de Sodio/metabolismo
12.
New Phytol ; 191(4): 958-969, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21569035

RESUMEN

Peptidases are known to play key roles in multiple biological processes in all living organisms. In higher plants, the vast majority of putative aminopeptidases remain uncharacterized. In this study, we performed functional and expression analyses of the Arabidopsis LAP2 through cDNA cloning, isolation of T-DNA insertional mutants, characterization of the enzymatic activity, characterization of gene expression and transcriptomics and metabolomics analyses of the mutants. Loss of function of LAP2, one of the 28 aminopeptidases in Arabidopsis, reduced vegetative growth, accelerated leaf senescence and rendered plants more sensitive to various stresses. LAP2 is highly expressed in the leaf vascular tissue and the quiescent center region. Integration of global gene expression and metabolite analyses suggest that LAP2 controlled intracellular amino acid turnover. The mutant maintained free leucine by up-regulating key genes for leucine biosynthesis. However, this influenced the flux of glutamate strikingly. As a result, γ-aminobutyric acid, a metabolite that is derived from glutamate, was diminished in the mutant. Decrements in these nitrogen-rich compounds are associated with morphological alterations and stress sensitivity of the mutant. The results indicate that LAP2 is indeed an enzymatically active aminopeptidase and plays key roles in senescence, stress response and amino acid turnover.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Leucil Aminopeptidasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Estrés Fisiológico , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Leucil Aminopeptidasa/genética , Mutagénesis Insercional , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Fotosíntesis , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Cloruro de Sodio/farmacología , Ácido gamma-Aminobutírico/metabolismo
13.
J Phycol ; 47(3): 517-523, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27021980

RESUMEN

It has been shown that marine algae produce the compatible solute dimethylsulfoniopropionate (DMSP) from methionine (Met) via four enzymatic reactions in which the third step, synthesis of 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) from 4-methylthio-2-hydroxybutyrate (MTHB), is the committing step. However, regulation of the biosynthetic pathways and transport properties of DMSP is largely unknown. Here, the effects of sulfur and sodium concentrations on the uptake and synthesis of DMSHB and DMSP were examined in a sterile mutant of Ulva pertusa Kjellm. Sulfur deficiency increased the activity of the sulfur assimilation enzyme O-acetyl serine sulfhydrylase but decreased the MTHB S-methyltransferase activity, suggesting the preferential utilization of sulfur atoms for Met metabolites other than DMSP. Uptake of DMSP and DMSHB was enhanced by S deficiency. High salinity enhanced the MTHB S-methyltransferase activity as well as the uptake of DMSHB. The MTHB S-methyltransferase activity was inhibited by its product DMSP. These data demonstrate the importance of MTHB S-methyltransferase activity and uptake of DMSHB for the regulation of DMSP.

14.
Phys Chem Chem Phys ; 12(23): 6067-75, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20405076

RESUMEN

Ultrafast transient absorption measurements in the femtosecond to picosecond time region were carried out for a blue copper protein, plastocyanin (Pc). To compare the dynamical profiles after photoexcitation upon the ligand-to-metal-charge-transfer (LMCT) band and the d-d transition band, the pump wavelength was set at wavelengths of 597 and 895 nm, respectively. The results were nearly identical, indicating that the transition from the LMCT to the lower ligand field (LF) states takes place in an ultrafast time regime of less than 40 fs. Subsequently, relaxation in the LF state occurs with a time constant of 90 fs and the system returns to the ground state with that of 250 fs. The longest time constant of 1.8 ps was attributed to the vibrational cooling in the ground state. Several wavepacket motions were observed, including Franck-Condon type motion at approximately 510 nm and a Herzberg-Teller type motion at 660-720 nm. Critically damped low-frequency oscillation of approximately 30 cm(-1) was also observed with both excitation wavelengths with the strongest amplitude around 600 nm. This oscillation could be due to the motion of the protein that is ballistically stimulated by ultrafast relaxation.


Asunto(s)
Plastocianina/química , Cinética , Ligandos , Simulación de Dinámica Molecular , Espectrofotometría , Factores de Tiempo , Vibración
15.
Biosci Biotechnol Biochem ; 74(5): 1116-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20460696

RESUMEN

Hitherto, the roles of specific amino acid residues of ChaA, one of three Na(+)/H(+) antiporters in Escherichia coli, in exchange activity have not been reported. Here we examined the role of acidic amino acid residues, Glu-85 and Glu-325, on the hydrophobic transmembrane domains. It was found that ChaA is involved in salt tolerance at alkaline pH. Mutagenesis analyses revealed the importance of Glu-85, but not Glu-325, in the exchange activity.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Ácido Glutámico , Protones , Sodio/metabolismo , Proteínas de Escherichia coli/genética , Mutación , Estructura Terciaria de Proteína
16.
Protoplasma ; 257(2): 525-536, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31807913

RESUMEN

Sugarcane is a sugar-producing crop widely grown in tropical regions in over 120 countries of the world. Salt-affected soil is one of the most significant abiotic constraints that inhibit growth and crop productivity, and, consequently, reduce sucrose concentration in the stalk. The present study investigated vacuolar ion homeostasis, Na+ accumulation, and physiological and morphological adaptations under salt stress in two different sugarcane genotypes (salt-tolerant K88-92 and salt-sensitive K92-80) under greenhouse conditions. Na+ was rapidly absorbed by the root tissues of both sugarcane genotypes within 3-7 days of 150 mM NaCl treatment, as confirmed by the results of CoroNa Green fluorescence staining. In addition, the rate of Na+ translocation from roots to shoots was evidently reduced, leading to lower amount of Na+ in the leaf tissues. At the cellular level, expression of ShNHX1 (vacuolar Na+/H+ antiporter), ShV-PPase (vacuolar H+-pyrophosphatase), and ShV-ATPase (vacuolar H+-ATPase) was upregulated in salt-stressed plants for the compartmentation of Na+ into the vacuoles of root cells. Interestingly, sucrose, glucose, and fructose in root tissues of salt-stressed sugarcane cv. K88-92 were increased by 10.61, 5.58, and 1.81 folds, respectively, over the control. Total soluble sugars in the roots and free proline in the leaves of sugarcane cv. K88-92 (salt-tolerant) were enriched by 3.08 and 1.99 folds, respectively, when plants were exposed to 150 mM NaCl, leading to maintain better photosynthetic abilities, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and water use efficiency (WUE) in sugarcane cv. K88-92 than those in cv. K92-80. The study concludes that Na+ compartmentation in the root tissue acts as a major defense mechanism in sugarcane, especially in salt-tolerant genotype.


Asunto(s)
Iones/química , Hojas de la Planta/química , Proteínas de Plantas/química , Saccharum/química , Vacuolas/química , Genotipo , Sodio/metabolismo
17.
Protoplasma ; 257(6): 1595-1606, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32671620

RESUMEN

Salt stress in the rice field is one of the most common abiotic stresses, reducing crop productivity, especially at reproductive stage, which is very sensitive to salt stress. The aim of this investigation was to study mRNA-related Na+ uptake/translocation and Na+ enrichment in the cellular level, leading to physiological changes, growth characteristics, and yield attributes in FL530 [salt-tolerant genotype; carrying SKC1 (in relation to high-affinity potassium transporters controlling Na+ and K+ translocation) and qSt1b (linking to salt injury score) QTLs] and KDML105 (salt-sensitive cultivar; lacking both QTLs) parental lines and 221-48 (carrying SKC1 and qSt1b QTLs) derived from BILs (backcross introgression lines) at 50% flowering of rice, under 150-mM NaCl until harvesting process. The upregulation of OsHKT1;5 (mediating Na+ exclusion into xylem parenchyma cells) and OsNHX1 (Na+/H+ exchanger to secrete Na+ into vacuole) and downregulation of OsHKT2;1 and OsHKT2;2 (mediating Na+ restriction in the roots, leaf sheath and older leaves) in cvs. FL530 and 221-48 (+ SKC1; + qSt1b) under salt stress were observed. It restricted Na+ level in flag leaf, thereby preventing salt toxicity, as indicated by maintenance of photon yield of PSII (ΦPSII), net photosynthetic rate (Pn), transpiration rate (E) and overall growth performances. In contrast, Na+ enrichment in flag leaf of cv. KDML105 (-SKC1;-qSt1b) caused the reduction in ΦPSII by 30.5% over the control, leading to the reduction in Pn by 62.3%, in seed sterility by 88.2%, and yield loss by 85.1%. Moreover, the negative relationships between Na+ enrichment in flag leaf, physiological changes, and yield traits in rice crop grown under salt stress were demonstrated. Based on this investigation, rice genotype 221-48 was found to possess salt-tolerant traits at reproductive stage and thus could prove to be a potential candidate for future breeding programs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Oryza/química , Estrés Salino/fisiología , Sodio/metabolismo , Homeostasis
18.
Appl Environ Microbiol ; 75(20): 6626-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19700555
19.
J Biol Inorg Chem ; 14(6): 821-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19294434

RESUMEN

Electron transfer (ET) through and between proteins is a fundamental biological process. The activation energy for an ET reaction depends upon the Gibbs energy change upon ET (DeltaG(0)) and the reorganization energy. Here, we characterized ET from Pseudomonas aeruginosa cytochrome c(551) (PA) and its designed mutants to cupredoxins, Silene pratensis plastocyanin (PC) and Acidithiobacillus ferrooxidans rusticyanin (RC), through measurement of pseudo-first-order ET rate constants (k(obs)). The influence of the DeltaG (0) value for ET from PA to PC or RC on the k(obs) value was examined using a series of designed PA proteins exhibiting a variety of E (m) values, which afford the DeltaG (0) variation range of 58-399 meV. The plots of the k(obs) values obtained against the DeltaG(0) values for both PA-PC and PA-RC redox pairs could be fitted well with a single Marcus equation. We have shown that the ET activity of cytochrome c can be controlled by tuning the E(m) value of the protein through the substitution of amino acid residues located in hydrophobic-core regions relatively far from the redox center. These findings provide novel insights into the molecular design of cytochrome c, which could be utilized for controlling its ET activity by means of protein engineering.


Asunto(s)
Azurina/química , Azurina/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Aquifoliaceae/enzimología , Transporte de Electrón , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Plastocianina/química , Plastocianina/metabolismo , Conformación Proteica , Pseudomonas aeruginosa/enzimología , Termodinámica
20.
Plant Physiol Biochem ; 142: 211-216, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31302410

RESUMEN

Choline is a vital metabolite in plant and synthesized from phosphocholine by phosphocholine phosphatase. The Arabidopsis At1g17710 was identified as the first plant gene encoding the phosphatase for both phosphoethanolamine and phosphocholine (PECP) with much higher catalytic efficiency (>10-fold) for former. In betaine accumulating plants, choline is further required for betaine synthesis. In this report, we found three putative PECP genes in sugar beet, betaine accumulating plants. Two genes encode the proteins of 274 amino acid residues and designated as BvPECP1S and BvPECP2S. Another gene encodes the 331 amino acid protein (BvPECP2L) consisted of BvPECP2S with extra C-terminal amino acid. Enzymatic assays of BvPECP1S revealed that BvPECP1S exhibited the phosphatase activity for both phosphoethanolamine and phosphocholine with higher affinity (>1.8-fold) and catalytic efficiency (>2.64-fold) for phosphocholine. BvPECP2L exhibited low activity. RT-PCR experiments for BvPECP1S showed the increased expression in young leaf and root tip under salt-stress whereas the increased expression in all organs under phosphate deficiency. The expression level of BvPECP2L in salt stressed young leaf and root tip was induced by phosphate deficient. Physiological roles of BvPECP1S and BvPECP2L for the betaine synthesis were discussed.


Asunto(s)
Beta vulgaris/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Beta vulgaris/enzimología , Beta vulgaris/genética , Beta vulgaris/fisiología , Colina/metabolismo , Etanolaminas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Monoéster Fosfórico Hidrolasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes , Estrés Salino , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA