Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(31): e2310608, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461532

RESUMEN

Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.


Asunto(s)
Antracenos , Encéfalo , Depresión , Perileno , Fósforo , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Animales , Antracenos/química , Fósforo/química , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Ratones , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica/metabolismo , Nanopartículas/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/química , Estrés Oxidativo/efectos de los fármacos
2.
J Nanobiotechnology ; 22(1): 122, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504208

RESUMEN

Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Flavanonas , Nanopartículas , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/patología , Pez Cebra/metabolismo , Receptores de Estrógenos/metabolismo , Estrógenos/metabolismo , Estrógenos/uso terapéutico , Tamoxifeno/farmacología , Estradiol/farmacología , Hígado/metabolismo
3.
Int J Nanomedicine ; 18: 6847-6868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026523

RESUMEN

Lipid-structured vesicles have been applied for drug delivery system for over 50 years. Based on their origin, lipid-structured vesicles are divided into two main categories, namely synthetic lipid vesicles (SLNVEs) and vesicles of mammalian origin (MDVEs). Although SLNVEs can stably transport anti-cancer drugs, their biocompatibility is poor and degradation of exogenous substances is a potential risk. Unlike SLNVEs, MDVEs have excellent biocompatibility but are limited by a lack of stability and a risk of contamination by dangerous pathogens from donor cells. Since the first discovery of plant-derived vesicles (PDVEs) in carrot cell supernatants in 1967, emerging evidence has shown that PDVEs integrate the advantages of both SLNVEs and MDVEs. Notably, 55 years of dedicated research has indicated that PDVEs are an ideal candidate vesicle for drug preparation, transport, and disease treatment. The current review systematically focuses on the role of PDVEs in cancer therapy and in particular compares the properties of PDVEs with those of conventional lipid vesicles, summarizes the preparation methods and quality control of PDVEs, and discusses the application of PDVEs in delivering anti-cancer drugs and their underlying molecular mechanisms for cancer therapy. Finally, the challenges and future perspectives of PDVEs for the development of novel therapeutic strategies against cancer are discussed.


Asunto(s)
Antineoplásicos , Exosomas , Neoplasias , Animales , Humanos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Lípidos , Mamíferos
4.
Front Oncol ; 11: 743189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513718

RESUMEN

Exosomes are composed of a lipid bilayer membrane, containing proteins, nucleic acids, DNA, RNA, etc., derived from donor cells. They have a size range of approximately 30-150 nm. The intrinsic characteristics of exosomes, including efficient cellular uptake, low immunogenicity, low toxicity, intrinsic ability to traverse biological barriers, and inherent targeting ability, facilitate their application to the drug delivery system. Here, we review the generation, uptake, separation, and purification methods of exosomes, focusing on their application as carriers in tumor diagnosis and treatment, especially in brain tumors, as well as the patent applications of exosomes in recent years.

5.
Int J Nanomedicine ; 15: 10453-10467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33380795

RESUMEN

PURPOSE: Ginkgolide B (GB) is a terpene lactone derivative of Ginkgo biloba that is believed to function in a neuroprotective manner ideal for treating Parkinson's disease (PD). Despite its promising therapeutic properties, GB has poor bioavailability following oral administration and cannot readily achieve sufficient exposure in treated patients, limiting its clinical application for the treatment of PD. In an effort to improve its efficacy, we utilized poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-PCL) nanoparticles as a means of encapsulating GB (GB-NPs). These NPs facilitated the sustained release of GB into the blood, thereby improving its ability to accumulate in the brain and to treat PD. METHODS AND RESULTS: Using Madin-Darby canine kidney (MDCK) cells, we were able to confirm that these NPs could be taken into cells via multiple nonspecific mechanisms including micropinocytosis, clathrin-dependent endocytosis, and lipid raft/caveolae-mediated endocytosis. Once internalized, these NPs tended to accumulate in the endoplasmic reticulum and lysosomes. In zebrafish, we determined that these NPs were readily able to undergo transport across the chorion, gastrointestinal, blood-brain, and blood-retinal barriers. In a 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal damage model system, we confirmed the neuroprotective potential of these NPs. Following oral administration to rats, GB-NPs exhibited more desirable pharmacokinetics than did free GB, achieving higher GB concentrations in both the brain and the blood. Using a murine PD model, we demonstrated that these GB-NPs achieved superior therapeutic efficacy and reduced toxicity relative to free GB. CONCLUSION: In conclusion, these results indicate that NPs encapsulation of GB can significantly improve its oral bioavailability, cerebral accumulation, and bioactivity via mediating its sustained release in vivo.


Asunto(s)
Ginkgólidos/administración & dosificación , Ginkgólidos/farmacología , Lactonas/administración & dosificación , Lactonas/farmacología , Nanopartículas/administración & dosificación , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Administración Oral , Animales , Disponibilidad Biológica , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Perros , Embrión no Mamífero/efectos de los fármacos , Glicoles de Etileno/química , Femenino , Ginkgólidos/farmacocinética , Humanos , Lactonas/farmacocinética , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos C57BL , Nanopartículas/química , Fármacos Neuroprotectores/administración & dosificación , Poliésteres/química , Ratas Sprague-Dawley , Pez Cebra/embriología
6.
Stem Cells Int ; 2020: 8897494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381193

RESUMEN

The establishment of human-induced pluripotent stem cell (iPSC) models from sporadic Alzheimer's disease (sAD) patients is necessary and could potentially benefit research into disease etiology and therapeutic strategies. However, the development of sAD iPSC models is still limited due to the multifactorial nature of the disease. Here, we extracted peripheral blood mononuclear cells (PBMCs) from a patient with sAD and induced them into iPSC by introducing the Sendai virus expressing Oct3/4, Sox2, c-Myc, and Klf4, which were subsequently induced into neural cells to build the cell model of AD. Using alkaline phosphatase staining, immunofluorescence staining, karyotype analysis, reverse transcription-polymerase chain reaction (RT-PCR), and teratoma formation in vitro, we demonstrated that the iPSC derived from PMBCs (PBMC-iPSC) had a normal karyotype and potential to differentiate into three embryonic layers. Immunofluorescence staining and quantitative real-time polymerase chain reaction (qPCR) suggested that PBMC-iPSCs were successfully differentiated into neural cells. Detection of beta-amyloid protein oligomer (AßO), beta-amyloid protein 1-40 (Aß 1-40), and beta-amyloid protein 1-42 (Aß 1-42) indicated that the AD cell model was satisfactorily constructed in vitro. In conclusion, this study has successfully generated an AD cell model with pathological features of beta-amyloid peptide deposition using PBMC from a patient with sAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA