Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(25): 14543-14551, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32461376

RESUMEN

The genetic architecture of quantitative traits is determined by both Mendelian and polygenic factors, yet classic examples of plant domestication focused on selective sweep of newly mutated Mendelian genes. Here we report the chromosome-level genome assembly and the genomic investigation of a nonclassic domestication example, bitter gourd (Momordica charantia), an important Asian vegetable and medicinal plant of the family Cucurbitaceae. Population resequencing revealed the divergence between wild and South Asian cultivars about 6,000 y ago, followed by the separation of the Southeast Asian cultivars about 800 y ago, with the latter exhibiting more extreme trait divergence from wild progenitors and stronger signs of selection on fruit traits. Unlike some crops where the largest phenotypic changes and traces of selection happened between wild and cultivar groups, in bitter gourd large differences exist between two regional cultivar groups, likely reflecting the distinct consumer preferences in different countries. Despite breeding efforts toward increasing female flower proportion, a gynoecy locus exhibits complex patterns of balanced polymorphism among haplogroups, with potential signs of selective sweep within haplogroups likely reflecting artificial selection and introgression from cultivars back to wild accessions. Our study highlights the importance to investigate such nonclassic example of domestication showing signs of balancing selection and polygenic trait architecture in addition to classic selective sweep in Mendelian factors.


Asunto(s)
Domesticación , Genoma de Planta , Momordica charantia/genética , Selección Genética , Especiación Genética , Herencia Multifactorial , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
3.
DNA Res ; 24(1): 51-58, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28028039

RESUMEN

Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant.


Asunto(s)
Genoma de Planta , Momordica charantia/genética , Plantas Medicinales/genética , Clima Tropical , Elementos Transponibles de ADN , Filogenia , Proteínas Inactivadoras de Ribosomas/genética , Inhibidores de Tripsina/metabolismo
4.
PLoS One ; 9(1): e87138, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498029

RESUMEN

Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding.


Asunto(s)
Genoma de Planta/genética , Momordica charantia/genética , Secuencia de Bases , Mapeo Cromosómico/métodos , Ligamiento Genético/genética , Marcadores Genéticos/genética , Genotipo , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA