Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2014: 217973, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24526884

RESUMEN

This study shows the problem of power saving mechanism (PSM) that sleep intervals of uplink (UL) connections do not synchronize with sleep intervals of downlink (DL) connections. That is, the energy of a mobile station (MS) is not really saved if the DL connections are in the sleep mode while the UL connections are in normal mode, and vice versa. To avoid the asynchronism of power saving (PS) between UL and DL connections, we invent a mechanism of DL connections regulating UL connections, called DL and UL Alignment (DUAL) scheme, to improve the energy efficiency for PS. Considering that the buffer size of MS is limited, DUAL uses the mean packet arrival rate of UL λ u and a relatively safe threshold of buffer size Q T as the parameters to estimate the maximum allowable waiting time to align the UL with the DL connections. To analyze the performance of DUAL, a system model of PS is proposed to evaluate the performance of DUAL under different conditions. The correctness of performance analysis of DUAL is validated by using simulation with realistic parameters. Numerical experiments show that DUAL improves the energy conservation significantly when UL traffic is greater than DL traffic.


Asunto(s)
Modelos Teóricos
2.
PLoS One ; 9(8): e103429, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25089822

RESUMEN

In the fourth generation or next generation networks, services of non-real-time variable bit rate (NRT-VBR) and best effort (BE) will dominate over 85% of the total traffic in the networks. In this paper, we study the power saving mechanism of NRT-VBR and BE services for mobile handsets (MHs) to prolong their battery lifetime (i.e., the sustained operation duration) in the fourth generation networks. Because the priority of NRT-VBR and BE is lower than that of real-time VBR (RT-VBR) or guaranteed bit rate (GBR) services, we investigate an extended sleep mode for lower priority services (e.g., NRT-VBR and BE) in an MH to conserve the energy. The extended sleep mode is used when the MH wakes up from the sleep mode but it cannot obtain the bandwidth from base station (BS). The proposed mechanism, named extra power saving scheme (EPSS), uses the M/M/k/k Markovian queuing model to estimate the extended sleep duration to let MHs conserve their battery energy when the networks traffic is congested. To study the performance of EPSS, an accurate analysis model of energy is presented and validated by taking a series of simulations. Numerical experiments show that EPSS can achieve 43% extra energy conservation at most when downlink resource is saturated. We conclude that the energy of MHs can be conserved further by applying EPSS when the traffic load is saturated. The effect of energy saving becomes more obvious when the portion of NRT-VBR and BE services is greater than that of RT-VBR and GBR services.


Asunto(s)
Teléfono Celular , Redes de Comunicación de Computadores , Suministros de Energía Eléctrica , Tecnología Inalámbrica , Algoritmos , Simulación por Computador , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA