Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mov Disord ; 37(8): 1761-1767, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35708213

RESUMEN

BACKGROUND: Pathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson's disease. However, only seven variants have been confirmed to be pathogenic. OBJECTIVES: We identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing. METHODS: We transiently expressed wild-type, the two new variants, or two known pathogenic mutants (G2019S and R1441G) in HEK-293 T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins. RESULTS: The two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity. CONCLUSIONS: We identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética
2.
Neurobiol Dis ; 157: 105426, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34144124

RESUMEN

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
3.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201785

RESUMEN

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Mutantes/metabolismo , Mutación , alfa-Sinucleína/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas Mutantes/genética , Dominios Proteicos , Ratas , alfa-Sinucleína/genética
4.
Biochem J ; 476(19): 2797-2813, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31527116

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD), and orally bioavailable, brain penetrant and highly potent LRRK2 kinase inhibitors are in early stages of clinical testing. Detection of LRRK2 phosphorylation, as well as phosphorylation of Rab10, a LRRK2 kinase substrate, have been proposed as target engagement biomarkers for LRRK2 inhibitor clinical trials. However, these readouts do not seem able to stratify patients based on enhanced LRRK2 kinase activity. Here, we describe a robust cell biological assay based on centrosomal cohesion alterations which were observed in peripheral blood mononuclear cell-derived lymphoblastoid cell lines (LCLs) from patients with G2019S LRRK2 mutations as compared with healthy controls, and could also be detected in a subset of sporadic PD patient samples. We suggest that LCLs may be a valuable resource for LRRK2 research, and that determination of centrosomal cohesion deficits may assist in the stratification of a subset of sporadic PD patients.


Asunto(s)
Centrosoma/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedad de Parkinson/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Fosforilación
5.
Hum Mol Genet ; 26(14): 2747-2767, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453723

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Variación Genética , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal
6.
Proteomics ; 18(13): e1800103, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29791783

RESUMEN

Defining a common and specific function for homologs of a novel protein family is not a trivial task. In their recent study, Tomkins and colleagues have addressed this challenge for the ROCO protein family by exploring interactomes of its four human members: MASL1, DAPK1, LRRK1, and LRRK2. ROCO proteins are characterized by a Ras-GTPase domain embedded in complex multidomain proteins and a functional descriptor for this protein family has been elusive despite accumulating research, particularly for LRRK2, a protein implicated in Parkinson's disease. Tomkins et al. have combined an in silico weighted literature mining approach with novel interactomics data obtained on protein chips for all four proteins under strictly comparable conditions. The combination of these approaches has allowed the prudent formulation of common functions for ROCO proteins, including their involvement in stress response and cell projection organization. In addition, the study also confirms functional specificity for the individual ROCOs with such functions as cell death and apoptosis assigned to DAPK1, cellular, and neuronal development associated with LRRK1 and intracellular transport and organization assigned to LRRK2.


Asunto(s)
Enfermedad de Parkinson , Mapas de Interacción de Proteínas , GTP Fosfohidrolasas , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Proteínas Serina-Treonina Quinasas
7.
Biochem Soc Trans ; 45(1): 207-212, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28202674

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a complex signalling protein that is a key therapeutic target, particularly in Parkinson's disease (PD). In addition, there is now evidence showing that LRRK2 expression and phosphorylation levels have potential as markers of disease or target engagement. Indeed, reports show increases in LRRK2 protein levels in the prefrontal cortex of PD patients relative to controls, suggesting that increase in total LRRK2 protein expression is correlated with disease progression. LRRK2 phosphorylation levels are reduced in experimental systems for most disease mutants, and LRRK2 is also rapidly dephosphorylated upon LRRK2 inhibitor treatment, considered potential therapeutics. Recently, the presence of LRRK2 was confirmed in exosomes from human biofluids, including urine and cerebrospinal fluid. Moreover, phosphorylation of LRRK2 at phosphosites S910, S935, S955 and S973, as well as at the autophosphoryation site S1292, was found in urinary exosomes. In this review, we summarize knowledge on detection of LRRK2 in human biofluids and the relevance of these findings for the development of PD-related biomarkers.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/enzimología , Corteza Prefrontal/enzimología , Secuencia de Aminoácidos , Biomarcadores/sangre , Biomarcadores/orina , Exosomas/enzimología , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Fosforilación , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(7): 2626-31, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24510904

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.


Asunto(s)
Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Complejos Multiproteicos/metabolismo , Enfermedad de Parkinson/enzimología , Mapeo de Interacción de Proteínas/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Análisis de Varianza , Western Blotting , Encéfalo/metabolismo , Fraccionamiento Celular , Cartilla de ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Aparato de Golgi/ultraestructura , Células HEK293 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Espectrometría de Masas , Microscopía Confocal , Complejos Multiproteicos/genética , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/genética , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
9.
FASEB J ; 29(7): 2980-92, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25854701

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal-dominant forms of Parkinson's disease. LRRK2 is a modular, multidomain protein containing 2 enzymatic domains, including a kinase domain, as well as several protein-protein interaction domains, pointing to a role in cellular signaling. Although enormous efforts have been made, the exact pathophysiologic mechanisms of LRRK2 are still not completely known. In this study, we used a chemical genetics approach to identify LRRK2 substrates from mouse brain. This approach allows the identification of substrates of 1 particular kinase in a complex cellular environment. Several of the identified peptides are involved in the regulation of microtubule (MT) dynamics, including microtubule-associating protein (MAP)/microtubule affinity-regulating kinase 1 (MARK1). MARK1 is a serine/threonine kinase known to phosphorylate MT-binding proteins such as Tau, MAP2, and MAP4 at KXGS motifs leading to MT destabilization. In vitro kinase assays and metabolic-labeling experiments in living cells confirmed MARK1 as an LRRK2 substrate. Moreover, we also showed that LRRK2 and MARK1 are interacting in eukaryotic cells. Our findings contribute to the identification of physiologic LRRK2 substrates and point to a potential mechanism explaining the reported effects of LRRK2 on neurite morphology.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
10.
J Biol Chem ; 289(2): 895-908, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24275654

RESUMEN

Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and ß-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three ß-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of ß-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Alanina/química , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Lisina/química , Lisina/genética , Lisina/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
11.
J Neurochem ; 135(6): 1242-56, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26375402

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Leucina/genética , Neuritas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quinasas p21 Activadas/genética , Animales , Encéfalo/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mamíferos/metabolismo , Ratones , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Quinasas p21 Activadas/metabolismo
12.
Hum Mol Genet ; 22(3): 608-20, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23125283

RESUMEN

Recent genome-wide association studies indicate that a simple alteration of Leucine-rich repeat kinase 2 (LRRK2) gene expression may contribute to the etiology of sporadic Parkinson's disease (PD). However, the expression and regulation of LRRK2 protein in the sporadic PD brains remain to be determined. Here, we found that the expression of LRRK2 protein was enhanced in the sporadic PD patients using the frontal cortex tissue from a set of 16 PD patients and 7 control samples. In contrast, no significant difference was detected in the level of LRRK2 mRNA expression between the control and PD cases, suggesting a potential post-transcriptional modification of the LRRK2 protein expression in the sporadic PD brains. Indeed, it was identified that microRNA-205 (miR-205) suppressed the expression of LRRK2 protein through a conserved-binding site at the 3'-untranslated region (UTR) of LRRK2 gene. Interestingly, miR-205 expression was significantly downregulated in the brains of patients with sporadic PD, showing the enhanced LRRK2 protein levels. Also, in vitro studies in the cell lines and primary neuron cultures further established the role of miR-205 in modulating the expression of LRRK2 protein. In addition, introduction of miR-205 prevented the neurite outgrowth defects in the neurons expressing a PD-related LRRK2 R1441G mutant. Together, these findings suggest that downregulation of miR-205 may contribute to the potential pathogenic elevation of LRRK2 protein in the brains of patients with sporadic PD, while overexpression of miR-205 may provide an applicable therapeutic strategy to suppress the abnormal upregulation of LRRK2 protein in PD.


Asunto(s)
MicroARNs/metabolismo , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Encéfalo/patología , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Regulación hacia Abajo , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Células HEK293 , Células HeLa , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Transgénicos , MicroARNs/genética , Datos de Secuencia Molecular , Mutación Missense , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Parkinson/fisiopatología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Regulación hacia Arriba
13.
J Neurochem ; 131(2): 239-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24947832

RESUMEN

Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. LRRK1 and LRRK2 (leucine-rich repeat kinase) interaction partners were identified by two different protein-protein interaction screens. These confirmed epidermal growth factor receptor (EGR-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. Functional analysis of these interactions and the pathways they mediate shows that LRRK1 and LRRK2 signaling do not intersect, reflective of the differential role of both LRRKs in Parkinson's disease.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina
14.
Bioorg Med Chem Lett ; 24(19): 4630-4637, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25219901

RESUMEN

The most prevalent leucine-rich repeat kinase 2 (LRRK2) mutation G2019S is associated with Parkinson's disease (PD). It enhances kinase activity and has been identified in both familial and sporadic cases. Kinase activity was reported to be required for LRRK2 mutants to exert their toxic effects. Hence LRRK2 kinase inhibition may be a promising therapeutic target for PD. Here we report on the discovery and characterization of indolinone based LRRK2 inhibitors. Indolinone 15b, the most potent and selective inhibitor of the present series, is characterized by an IC50 of 15nM against wild-type LRRK2 and 10nM against the LRRK2 G2019S mutant, respectively. Compound 15b was further evaluated in a kinase panel including 46 human protein kinases and in a zebrafish embryo phenotype assay, which enabled toxicity determination in whole organisms.


Asunto(s)
Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Pez Cebra/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Indoles/síntesis química , Indoles/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Estructura Molecular , Fenotipo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
15.
Biochem J ; 456(1): 119-28, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23937259

RESUMEN

A cluster of phosphorylation sites in LRRK2 (leucine-rich repeat kinase 2), including Ser910, Ser935, Ser955 and Ser973, is important for PD (Parkinson's disease) pathogenesis as several PD-linked LRRK2 mutants are dephosphorylated at these sites. LRRK2 is also dephosphorylated in cells after pharmacological inhibition of its kinase activity, which is currently proposed as a strategy for disease-modifying PD therapy. Despite this importance of LRRK2 dephosphorylation in mutant LRRK2 pathological mechanism(s) and in LRRK2's response to inhibition, the mechanism by which this occurs is unknown. Therefore we aimed to identify the phosphatase for LRRK2. Using a panel of recombinant phosphatases, we found that PP1 (protein phosphatase 1) efficiently dephosphorylates LRRK2 in vitro. PP1 activity on LRRK2 dephosphorylation was confirmed in cells using PP1 inhibition to reverse LRRK2 dephosphorylation induced by the potent LRRK2 kinase inhibitor LRRK2-IN1 as well as in R1441G mutant LRRK2. We also found that PP1 and LRRK2 can form a complex in cells. Furthermore, we observed that PP1 inhibition modulates LRRK2's cellular phenotype by reducing skein-like LRRK2-positive structures associated with dephosphorylation. In conclusion, the present study reveals PP1 as the physiological LRRK2 phosphatase, responsible for LRRK2 dephosphorylation observed in PD mutant LRRK2 and after LRRK2 kinase inhibition.


Asunto(s)
Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Benzodiazepinonas/farmacología , Línea Celular , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Mutación , Enfermedad de Parkinson/enzimología , Fosforilación , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Pirimidinas/farmacología
16.
Int J Mol Sci ; 15(1): 1040-67, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24434619

RESUMEN

The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson's disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN.


Asunto(s)
Polimerizacion , alfa-Sinucleína/química , Humanos , Cinética , Mutación Missense , Fosforilación , Proteínas de Unión a Tacrolimus/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
NPJ Parkinsons Dis ; 10(1): 12, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191886

RESUMEN

Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.

18.
Biochim Biophys Acta ; 1824(3): 450-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22251894

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% ß-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Recombinantes/química , Secuencia de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Escherichia coli/genética , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Luz , Datos de Secuencia Molecular , Mutación , Compuestos Orgánicos , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión de Radiación , Alineación de Secuencia
19.
NPJ Parkinsons Dis ; 9(1): 104, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393318

RESUMEN

Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.

20.
NPJ Parkinsons Dis ; 9(1): 21, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750568

RESUMEN

Expression or phosphorylation levels of leucine-rich repeat kinase 2 (LRRK2) and its Rab substrates have strong potential as disease or pharmacodynamic biomarkers. The main objective of this study is therefore to assess the LRRK2-Rab pathway for use as biomarkers in human, non-human primate (NHP) and rat urine. With urine collected from human subjects and animals, we applied an ultracentrifugation based fractionation protocol to isolate small urinary extracellular vesicles (uEVs). We used western blot with antibodies directed against total and phosphorylated LRRK2, Rab8, and Rab10 to measure these LRRK2 and Rab epitopes in uEVs. We confirm the presence of LRRK2 and Rab8/10 in human and NHP uEVs, including total LRRK2 as well as phospho-LRRK2, phospho-Rab8 and phospho-Rab10. We also confirm LRRK2 and Rab expression in rodent uEVs. We quantified LRRK2 and Rab epitopes in human cohorts and found in a first cohort that pS1292-LRRK2 levels were elevated in individuals carrying the LRRK2 G2019S mutation, without significant differences between healthy and PD groups, whether for LRRK2 G2019S carriers or not. In a second cohort, we found that PD was associated to increased Rab8 levels and decreased pS910-LRRK2 and pS935-LRRK2. In animals, acute treatment with LRRK2 kinase inhibitors led to decreased pT73-Rab10. The identification of changes in Rab8 and LRRK2 phosphorylation at S910 and S935 heterologous phosphosites in uEVs of PD patients and pT73-Rab10 in inhibitor-dosed animals further reinforces the potential of the LRRK2-Rab pathway as a source of PD and pharmacodynamic biomarkers in uEVs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA