Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(2): 2675-2688, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785276

RESUMEN

The field of quantum information processing offers secure communication protected by the laws of quantum mechanics and is on the verge of finding wider application for the information transfer of sensitive data. To improve cost-efficiency, extensive research is being carried out on the various components required for high data throughput using quantum key distribution (QKD). Aiming for an application-oriented solution, we report the realization of a multichannel QKD system for plug-and-play high-bandwidth secure communication at telecom wavelengths. We designed a rack-sized multichannel superconducting nanowire single photon detector (SNSPD) system, as well as a highly parallelized time-correlated single photon counting (TCSPC) unit. Our system is linked to an FPGA-controlled QKD evaluation setup for continuous operation, allowing us to achieve high secret key rates using a coherent-one-way protocol.

2.
Rev Sci Instrum ; 94(1): 013103, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725578

RESUMEN

Superconducting nanowire single-photon detectors are an enabling technology for modern quantum information science and are gaining attractiveness for the most demanding photon counting tasks in other fields. Embedding such detectors in photonic integrated circuits enables additional counting capabilities through nanophotonic functionalization. Here, we show how a scalable number of waveguide-integrated superconducting nanowire single-photon detectors can be interfaced with independent fiber optic channels on the same chip. Our plug-and-play detector package is hosted inside a compact and portable closed-cycle cryostat providing cryogenic signal amplification for up to 64 channels. We demonstrate state-of-the-art multi-channel photon counting performance with average system detection efficiency of (40.5 ± 9.4)% and dark count rate of (123 ± 34) Hz for 32 individually addressable detectors at minimal noise-equivalent power of (5.1 ± 1.2) · 10-18 W/Hz. Our detectors achieve timing jitter as low as 26 ps, which increases to (114 ± 17) ps for high-speed multi-channel operation using dedicated time-correlated single photon counting electronics. Our multi-channel single photon receiver offers exciting measurement capabilities for future quantum communication, remote sensing, and imaging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA