Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Divers ; 27(6): 2767-2787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36508118

RESUMEN

Herein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (1H NMR, 13C NMR, 19F NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds' the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with Ki values in the range of 8.30 ± 1.71 to 120.77 ± 8.61 nM for AChE, 16.97 ± 2.04 to 84.45 ± 13.78 nM for hCA I, and 14.09 ± 2.99 to 69.33 ± 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted.


Asunto(s)
Inhibidores de la Colinesterasa , Sales (Química) , Sales (Química)/farmacología , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica I/química , Anhidrasa Carbónica I/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular
2.
J Biochem Mol Toxicol ; 36(4): e23001, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35225413

RESUMEN

Here, we report the synthesis, characterization, and biological activities of a series of benzimidazolium salts bearing the trifluoromethylbenzyl group. All benzimidazolium salts were characterized by using nuclear magnetic resonance (NMR) (1 H NMR and 13 C NMR), Fourier transform-infrared spectroscopy, and elemental analysis techniques. The crystal structures of some of these compounds were obtained by the single-crystal X-ray diffraction method. Furthermore, the acetylcholinesterase (AChE) and α-glycosidase (α-Gly) enzyme inhibition activities of these compounds were investigated. The obtained results revealed that 2e, with Ki value of 1.36 ± 0.34 µM against AChE and 3d with Ki value of 91.37 ± 10.38 µM against α-Gly, were the most potent compounds against both assigned enzymes. It should be noted that most of the synthesized compounds were more potent than standard inhibitor tacrine (TAC) against AChE. In silico studies, we focused on compound 2e, 3d, 3e, and 3f as potent inhibitors of AChE and α-Gly, the compound 2e showed good binding energy (-10.23 kcal/mol), among the three selected compounds and positive control (-10.18, -10.08, and -7.37 kcal/mol for 3d, 3f, and TAC, respectively). Likewise, as a result of the same compounds against the α-Gly enzyme, the compound 3d had the highest binding affinity (-8.39 kcal/mol) between the four selected compounds and the positive control (-8.27, -8.10, -8.06, and -7.53 kcal/mol for 3f, 3e, 2e, and acarbose, respectively). From the absorption, distribution, metabolism, excretion, and toxicity analyses, it can be concluded that the compounds under consideration exhibited more drug-likeness properties in the prediction studies compared to positive controls.


Asunto(s)
Acetilcolinesterasa , Sales (Química) , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad
3.
Chem Biodivers ; 19(12): e202200257, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36260838

RESUMEN

The method for producing 4-trifluoromethoxybenzyl substituted benzimidazolium salts is described in this article. The method is based on the reaction of 4-trifluoromethoxybenzyl substituent alkylating agent with 1-alkylbenzimidazole. This method yielded 1-(4-trifluoromethoxybenzyl)-3-alkylbenzimidazolium bromide salts. These benzimidazolium salts were characterized by using 1 H-NMR, 13 C-NMR, FT-IR spectroscopy, and elemental analysis techniques. The crystal structure of 1f was enlightened by single crystal X-ray diffraction studies. Also, the enzyme inhibition effects of the synthesised compounds were investigated. They demonstrated highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 7.24±0.99 to 39.12±5.66 nM, 5.57±0.96 to 43.07±11.76 nM, and 4.38±0.43 to 18.68±3.60 nM for AChE, hCA I, and hCA II, respectively). In molecular docking study, the interactions of active compounds showing activity against AChE and hCAs enzymes were examined. The most active compound 1f has -10.90 kcal/mol binding energy value against AChE enzyme, and the potential structure compound 1e, which has activity against hCA I and hCA II enzymes, was -7.51 and -8.93 kcal/mol, respectively.


Asunto(s)
Bencimidazoles , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica I , Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Bencimidazoles/química , Bencimidazoles/farmacología
4.
J Biomol Struct Dyn ; 41(21): 11728-11747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36622368

RESUMEN

Herein, eight new NHC-based selenourea derivatives were synthesized and characterized by using spectroscopic method (1H, 19F, and 13C NMR, FT-IR), and elemental analysis techniques. These compounds were synthesized by mixing benzimidazolium salts, potassium carbonate, and selenium powder in ethyl alcohol. Additionally, the molecular and crystal structures of the three compounds (1c, 2b, and 2c) were determined using the single-crystal x-ray diffraction (XRD) method. Diffraction analysis demonstrated the partial carbon-selenium double-bond character of these compounds. All compounds were determined to be highly potent inhibitors for AChE and XO enzymes. The IC50 values for the compounds were found in the range of 0.361-0.754 µM for XO and from 0.995 to 1.746 µM for AChE. The DNA binding properties of the compounds were investigated. These compounds did not have a remarkable DNA binding property. Also, DPPH radical scavenging activities of the compounds were also investigated. Compounds (1c), (2a), (3a), and (3b) exhibited more pronounced DPPH radical scavenging activity when compared to other compounds. Docking studies were applied by using AutoDock 4 to determine interaction mechanism of the selected compounds (1a), (1b), and (3b). The compound (1b) has good binding affinity (-9.78 kcal/mol) against AChE, and (-6.86 kcal/mol) for XO target. Drug similarity properties of these compounds compared to positive controls were estimated and evaluated by ADMET analysis. Furthermore, molecular dynamics simulations have been applied to understand the accuracy of docking studies. These findings and the defined compounds could be potential candidates for the discovery and progress of effective medicine(s) for AChE and XO in the future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Compuestos de Selenio , Selenio , Acetilcolinesterasa , Xantina Oxidasa , Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , ADN , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA