Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.094
Filtrar
1.
Cell ; 186(21): 4662-4675.e12, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37734372

RESUMEN

Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.

2.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32814014

RESUMEN

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Asunto(s)
Variación Genética/genética , Enfermedades por Picaduras de Garrapatas/microbiología , Garrapatas/genética , Animales , Línea Celular , Vectores de Enfermedades , Especificidad del Huésped/genética
3.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788748

RESUMEN

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Interferón Tipo I/metabolismo , Neumonía Viral/inmunología , Receptores Inmunológicos/metabolismo , Adolescente , Adulto , Anciano , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Neumonía Viral/diagnóstico , Neumonía Viral/virología , RNA-Seq , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual
4.
Nature ; 615(7950): 158-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634707

RESUMEN

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Evasión Inmune , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Organoides , Factores de Necrosis Tumoral/inmunología , Interferón gamma/inmunología , Esferoides Celulares , Caspasas , Quinasas Janus , Factores de Transcripción STAT
5.
Nature ; 580(7803): E7, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296181

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 579(7798): 265-269, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015508

RESUMEN

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Asunto(s)
Betacoronavirus/clasificación , Enfermedades Transmisibles Emergentes/complicaciones , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/virología , Neumonía Viral/complicaciones , Neumonía Viral/virología , Síndrome Respiratorio Agudo Grave/etiología , Síndrome Respiratorio Agudo Grave/virología , Adulto , Betacoronavirus/genética , COVID-19 , China , Enfermedades Transmisibles Emergentes/diagnóstico por imagen , Enfermedades Transmisibles Emergentes/patología , Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/patología , Genoma Viral/genética , Humanos , Pulmón/diagnóstico por imagen , Masculino , Filogenia , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/patología , ARN Viral/genética , Recombinación Genética/genética , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/diagnóstico por imagen , Síndrome Respiratorio Agudo Grave/patología , Tomografía Computarizada por Rayos X , Secuenciación Completa del Genoma
7.
Chem Rev ; 123(24): 14038-14083, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-37917384

RESUMEN

Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.

8.
J Am Chem Soc ; 146(12): 8500-8507, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483183

RESUMEN

The selective transmembrane permeation of sodium ions achieved by biomimetic chemistry shows great potential to solve the problem of sodium ion transport blockade in diseases, but its implementation faces enormous difficulties. Herein, we design and synthesize a series of helically folded nanopores by employing a quinoline-oxadiazole structural sequence to finely replicate the pentahydrate structure of sodium ions. Surprisingly, these nanopores are capable of achieving sodium transmembrane permeation with ion selectivity at the level of natural sodium channels, as observed in rationally designed nanopores (M1-M5) with Na+/K+ ion selectivity ratio of up to 20.4. Moreover, slight structural variations in nanopore structures can switch ion transport modes between the channel and carrier. We found that, compared to the carrier mode, the channel mode not only transports ions faster but also has higher ion selectivity during transmembrane conduction, clearly illustrating that the trade-off phenomenon between ion selectivity and transport activity does not occur between the two transport modes of channel and carrier. At the same time, we also found that the spatial position and numbers of coordination sites are crucial for the sodium ion selectivity of the nanopores. Moreover, carrier M1 reported in this work is totally superior to the commercial Na+ carrier ETH2120, especially in terms of Na+/K+ ion selectivity, thus being a potentially practical Na+ carrier. Our study provides a new paradigm on the rational design of sodium-specific synthetic nanopores, which will open up the possibility for the application of artificial sodium-specific transmembrane permeation in biomedicine and disease treatment.

9.
PLoS Pathog ; 18(2): e1010259, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35176118

RESUMEN

At the end of 2019 Wuhan witnessed an outbreak of "atypical pneumonia" that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus denoted SARS-CoV-2. To provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their "total infectome", including viruses, bacteria and fungi. We identified 35 pathogen species, comprising 13 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (13.5%). SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen-Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016-2017.


Asunto(s)
COVID-19/epidemiología , Brotes de Enfermedades , Neumonía/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2/aislamiento & purificación , Enfermedad Aguda , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Líquido del Lavado Bronquioalveolar/microbiología , COVID-19/virología , China/epidemiología , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , Neumonía/microbiología , Infecciones del Sistema Respiratorio/microbiología , Adulto Joven
10.
Cancer Cell Int ; 24(1): 195, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835070

RESUMEN

BACKGROUND: Investigating the unexplored territory of lncRNA m6A modification in colorectal cancer (CRC) vasculature, this study focuses on LINC01106 and YTHDF1. METHODS: Clinical assessments reveal upregulated LINC01106 promoting vascular generation via the miR-449b-5p-VEGFA pathway. RESULTS: YTHDF1, elevated in CRC tissues, emerges as an adverse prognostic factor. Functional experiments showcase YTHDF1's inhibitory effects on CRC cell dynamics. Mechanistically, Me-CLIP identifies m6A-modified LINC01106, validated as a YTHDF1 target through Me-RIP. CONCLUSIONS: This study sheds light on the YTHDF1-mediated m6A modification of LINC01106, presenting it as a key player in suppressing CRC vascular generation.

11.
Biotechnol Bioeng ; 121(2): 696-709, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994547

RESUMEN

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cricetinae , Animales , Cricetulus , Células CHO , Perfusión
12.
Neuroendocrinology ; 114(3): 263-278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37989106

RESUMEN

INTRODUCTION: We investigated the effects of electroacupuncture (EA) on improving obesity and insulin resistance (IR) in high-fat diet-induced (HFDI) obese rats by modulating the nucleus tractus solitarius (NTS) glucagon-like peptide-1 (GLP-1)-ventral tegmental area (VTA) dopamine (DA) neural reward circuit, thereby uncovering a possible central mechanism underlying EA's actions in improving obesity and IR. METHODS: We randomly allocated 45 Wistar male rats to five groups (normal, model, EA, chemogenetic activation, chemogenetic suppression + EA), with 9 rats in each group. All interventions were conducted within 8 weeks after the model was established. We tested rats for obesity phenotypes included body mass, Lee's index, 24-h food intake, and glucose-metabolism parameters. We observed protein and gene expression for GLP-1 in the NTS and tyrosine hydroxylase in the VTA by Western blotting and real-time polymerase chain reaction, as well as their localization by immunofluorescence. We also determined the DA content in the VTA using high-performance liquid chromatography. RESULTS: Obese rats exhibited marked hyperphagia, accompanied by increased excitability of DA neurons in the VTA region and reduced insulin sensitivity. After EA treatment, obese rats showed augmented excitability of NTS GLP-1 and suppression of VTADA neurons with a diminution in food intake, showing results similar to those in the chemogenetic activation group. After EA treatment and while inhibiting GLP-1 neurons by chemogenetics, the effect of EA on activating GLP-1 neurons and inhibiting VTADA was partially abrogated. The effects of improving obesity and insulin sensitivity were likewise also suppressed. CONCLUSION: EA effectively activated GLP-1 neurons in the NTS, thereby inhibited the expression of DA in the VTA and improved obesity and insulin sensitivity in HFDI-obese rats.


Asunto(s)
Electroacupuntura , Resistencia a la Insulina , Ratas , Masculino , Animales , Ratas Wistar , Péptido 1 Similar al Glucagón , Obesidad/terapia , Recompensa
13.
Mol Biol Rep ; 51(1): 113, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227102

RESUMEN

BACKGROUND: Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD: We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT: We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION: Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.


Asunto(s)
Temblor Esencial , Ataxias Espinocerebelosas , Humanos , Temblor Esencial/epidemiología , Temblor Esencial/genética , China/epidemiología , Ataxias Espinocerebelosas/epidemiología , Ataxias Espinocerebelosas/genética , Nucleótidos
14.
Phys Chem Chem Phys ; 26(3): 2629-2637, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174360

RESUMEN

Using first-principles calculations, we predicted three novel superhard semiconducting structures of C8B2N2 with a space group of P3m1. We investigated their mechanical properties and electronic structures up to 100 GPa. These three structures were successfully derived by substituting carbon (C) atoms with isoelectronic boron (B) and nitrogen (N) atoms in the P3m1 phase, which is the most stable structure of BCN and exhibits exceptional mechanical properties. Our results indicated that these structures had superior energy over previously reported t-C8B2N2, achieved by replacing C atoms in the diamond supercell with B and N atoms. To ensure their stable existence, we thoroughly examined their mechanical and dynamical stabilities, and we found that their hardness values reached 82.4, 83.1, and 82.0 GPa, which were considerably higher than that of t-C8B2N2 and even surpassing the hardness of c-BN. Calculations of the electron localization function revealed that the stronger carbon-carbon covalent bonds made them much harder than t-C8B2N2. Additionally, our further calculations of band structures revealed that these materials had indirect bandgaps of 4.164, 4.692, and 3.582 eV. These findings suggest that these materials have the potential to be used as superhard semiconductors, potentially surpassing conventional superhard materials.

15.
Phys Chem Chem Phys ; 26(7): 6351-6361, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315085

RESUMEN

The exploration of the physical attributes of the recently discovered orthocarbonate Sr3CO5 is significant for comprehending the carbon cycle and storage mechanisms within the Earth's interior. In this study, first-principles calculations are initially used to examine the structural phase transitions of Sr3CO5 polymorphs within the range of lower mantle pressures. The results suggest that Sr3CO5 with the Cmcm phase exhibits a minimal enthalpy between 8.3 and 30.3 GPa. As the pressure exceeds 30.3 GPa, the Cmcm phase undergoes a transition to the I4/mcm phase, while the experimentally observed Pnma phase remains metastable under our studied pressure. Furthermore, the structural data of SrO, SrCO3, and Sr3CO5 polymorphs are utilized to develop a deep learning potential model suitable for the Sr-C-O system, and the pressure-volume relationship and elastic constants calculated using the potential model are in line with the available results. Subsequently, the elastic properties of Cmcm and I4/mcm phases in Sr3CO5 at high temperature and pressure are calculated using the molecular dynamics method. The results indicate that the I4/mcm phase exhibits higher temperature sensitivity in terms of elastic moduli and wave velocities compared to the Cmcm phase. Finally, the thermodynamic properties of the Cmcm and I4/mcm phases are predicted in the range of 0-2000 K and 10-120 GPa, revealing that the heat capacity and bulk thermal expansion coefficient of both phases increase with temperature, with the constant volume heat capacity gradually approaching the Dulong-Petit limit as the temperature rises.

16.
Nature ; 556(7700): 197-202, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618816

RESUMEN

Our understanding of the diversity and evolution of vertebrate RNA viruses is largely limited to those found in mammalian and avian hosts and associated with overt disease. Here, using a large-scale meta-transcriptomic approach, we discover 214 vertebrate-associated viruses in reptiles, amphibians, lungfish, ray-finned fish, cartilaginous fish and jawless fish. The newly discovered viruses appear in every family or genus of RNA virus associated with vertebrate infection, including those containing human pathogens such as influenza virus, the Arenaviridae and Filoviridae families, and have branching orders that broadly reflected the phylogenetic history of their hosts. We establish a long evolutionary history for most groups of vertebrate RNA virus, and support this by evaluating evolutionary timescales using dated orthologous endogenous virus elements. We also identify new vertebrate-specific RNA viruses and genome architectures, and re-evaluate the evolution of vector-borne RNA viruses. In summary, this study reveals diverse virus-host associations across the entire evolutionary history of the vertebrates.


Asunto(s)
Evolución Molecular , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Vertebrados/clasificación , Vertebrados/virología , Anfibios/virología , Animales , Biodiversidad , Peces/virología , Genoma Viral/genética , Interacciones Huésped-Patógeno , Virus ARN/genética , Reptiles/virología , Transcriptoma
17.
Nature ; 561(7722): E6, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29946168

RESUMEN

Change history: In this Article, author Li Liu should be associated with affiliation number 5 (College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China), rather than affiliation number 4 (Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, China). This has been corrected online.

18.
BMC Public Health ; 24(1): 1681, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914979

RESUMEN

BACKGROUND: Traumatic fractures occur frequently worldwide. However, research remains limited on the association between short-term exposure to temperature and traumatic fractures. This study aims to explore the impact of apparent temperature (AT) on emergency visits (EVs) due to traumatic fractures. METHODS: Based on EVs data for traumatic fractures and the contemporary meteorological data, a generalized Poisson regression model along with a distributed lag nonlinear model (DLNM) were undertaken to determine the impact of AT on traumatic fracture EVs. Subgroup analysis by gender and age and sensitivity analysis were also performed. RESULTS: A total of 25,094 EVs for traumatic fractures were included in the study. We observed a wide "J"-shaped relationship between AT and risk of traumatic fractures, with AT above 9.5 °C positively associated with EVs due to traumatic fractures. The heat effects became significant at cumulative lag 0-11 days, and the relative risk (RR) for moderate heat (95th percentile, 35.7 °C) and extreme heat (99.5th percentile, 38.8 °C) effect was 1.311 (95% CI: 1.132-1.518) and 1.418 (95% CI: 1.191-1.688) at cumulative lag 0-14 days, respectively. The cold effects were consistently non-significant on single or cumulative lag days across 0-14 days. The heat effects were higher among male and those aged 18-65 years old. The sensitivity analysis results remained robust. CONCLUSION: Higher AT is associated with cumulative and delayed higher traumatic fracture EVs. The male and those aged 18-65 years are more susceptible to higher AT.


Asunto(s)
Servicio de Urgencia en Hospital , Fracturas Óseas , Humanos , Masculino , Femenino , Adulto , China/epidemiología , Persona de Mediana Edad , Adolescente , Adulto Joven , Fracturas Óseas/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Anciano , Niño , Preescolar , Temperatura , Lactante , Calor/efectos adversos
19.
Chin J Traumatol ; 27(2): 107-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326140

RESUMEN

PURPOSE: To assess the value of the driving pressure variation rate (ΔP%) in predicting the outcome of weaning from invasive mechanical ventilation in patients with acute respiratory distress syndrome. METHODS: In this case-control study, a total of 35 patients with moderate-severe acute respiratory distress syndrome were admitted to the intensive care unit between January 2022 and December 2022 and received invasive mechanical ventilation for at least 48 h were enrolled. Patients were divided into successful weaning group and failed weaning group depending on whether they could be removed from ventilator support within 14 days. Outcome measures including driving pressure, PaO2:FiO2, and positive end-expiratory pressure, etc. were assessed every 24 h from day 0 to day 14 until successful weaning was achieved. The measurement data of non-normal distribution were presented as median (Q1, Q3), and the differences between groups were compared by Wilcoxon rank sum test. And categorical data use the Chi-square test or Fisher's exact test to compare. The predictive value of ΔP% in predicting the outcome of weaning from the ventilator was analyzed using receiver operating characteristic curves. RESULTS: Of the total 35 patients included in the study, 17 were successful vs. 18 failed in weaning from a ventilator after 14 days of mechanical ventilation. The cut-off values of the median ΔP% measured by Operator 1 vs. Operator 2 in the first 4 days were ≥ 4.17% and 4.55%, respectively (p < 0.001), with the area under curve of 0.804 (sensitivity of 88.2%, specificity of 64.7%) and 0.770 (sensitivity of 88.2%, specificity of 64.7%), respectively. There was a significant difference in mechanical ventilation duration between the successful weaning group and the failure weaning group (8 (6, 13) vs. 12 (7.5, 17.3), p = 0.043). The incidence of ventilator-associated pneumonia in the successful weaning group was significantly lower than in the failed weaning group (0.2‰ vs. 2.3‰, p = 0.001). There was a significant difference noted between these 2 groups in the 28-day mortality (11.8% vs. 66.7%, p = 0.003). CONCLUSION: The median ΔP% in the first 4 days of mechanical ventilation showed good predictive performance in predicting the outcome of weaning from mechanical ventilation within 14 days. Further study is needed to confirm this finding.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Desconexión del Ventilador , Estudios de Casos y Controles , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/terapia
20.
Angew Chem Int Ed Engl ; 63(17): e202320214, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38418405

RESUMEN

Geminal (gem-) disubstitution in heterocyclic monomers is an effective strategy to enhance polymer chemical recyclability by lowering their ceiling temperatures. However, the effects of specific substitution patterns on the monomer's reactivity and the resulting polymer's properties are largely unexplored. Here we show that, by systematically installing gem-dimethyl groups onto ϵ-caprolactam (monomer of nylon 6) from the α to ϵ positions, both the redesigned lactam monomer's reactivity and the resulting gem-nylon 6's properties are highly sensitive to the substitution position, with the monomers ranging from non-polymerizable to polymerizable and the gem-nylon properties ranging from inferior to far superior to the parent nylon 6. Remarkably, the nylon 6 with the gem-dimethyls substituted at the γ position is amorphous and optically transparent, with a higher Tg (by 30 °C), yield stress (by 1.5 MPa), ductility (by 3×), and lower depolymerization temperature (by 60 °C) than conventional nylon 6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA