Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Circ Res ; 132(9): 1185-1202, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104556

RESUMEN

Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.


Asunto(s)
Adrenomedulina , Sistema Cardiovascular , Adrenomedulina/genética , Adrenomedulina/metabolismo , Péptido Relacionado con Gen de Calcitonina , Sistema Cardiovascular/metabolismo , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Transducción de Señal , Humanos
2.
Microcirculation ; 27(6): e12624, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32352607

RESUMEN

OBJECTIVE: Inhibition of adenosine kinase (ADK), via augmenting endogenous adenosine levels exerts cardiovascular protection. We tested the hypothesis that ADK inhibition improves microvascular dilator and left ventricle (LV) contractile function under metabolic or hemodynamic stress. METHODS AND RESULTS: In Obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid rats, treatment with the selective ADK inhibitor, ABT-702 (1.5 mg/kg, intraperitoneal injections for 8-week) restored acetylcholine-, sodium nitroprusside-, and adenosine-induced dilations in isolated coronary arterioles, an effect that was accompanied by normalized end-diastolic pressure (in mm Hg, Lean: 3.4 ± 0.6, Obese: 17.6 ± 4.2, Obese + ABT: 6.6 ± 1.4) and LV relaxation constant, Tau (in ms, Lean: 6.9 ± 1.5, Obese: 13.9 ± 1.7, Obese + ABT: 6.0 ± 1.1). Mice with vascular endothelium selective ADK deletion (ADKVEC KO) exhibited an enhanced dilation to acetylcholine in isolated gracilis muscle (lgEC50 WT: -8.2 ± 0.1, ADKVEC KO: -8.8 ± 0.1, P < .05) and mesenteric arterioles (lgEC50 WT: -7.4 ± 0.2, ADKVEC KO: -8.1 ± 1.2, P < .05) when compared to wild-type (WT) mice, whereas relaxation of the femoral artery and aorta (lgEC50 WT: -7.03 ± 0.6, ADKVEC KO: -7.05 ± 0.8) was similar in the two groups. Wild-type mice progressively developed LV systolic and diastolic dysfunction when they underwent transverse aortic constriction surgery, whereas ADKVEC -KO mice displayed a lesser degree in decline of LV function. CONCLUSIONS: Our results indicate that ADK inhibition selectively enhances microvascular vasodilator function, whereby it improves LV perfusion and LV contractile function under metabolic and hemodynamic stress.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Microvasos/enzimología , Morfolinas/farmacología , Pirimidinas/farmacología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Izquierda/enzimología , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Diástole/efectos de los fármacos , Diástole/genética , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Zucker , Vasodilatación/genética , Disfunción Ventricular Izquierda/genética
3.
Opt Lett ; 44(19): 4845-4848, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568457

RESUMEN

The nominal composition of Al2O3-Ce:Y3Mg1.8Al1.4Si1.8O12 (A-Ce:YMASG) ceramic phosphors was fabricated by the vacuum sintering technique. The introduction of Al2O3 as a second phase partially enters the crystal lattice, which was confirmed by the composition changing of the samples through x-ray diffraction measurement. An impurity phase of Y4MgSi3O13 was observed in Ce:YMASG and disappeared with the introduction of Al2O3 at the concentration of 10 wt. %. When the content of Al2O3 increased to 30 and 50 wt. %, the second phase of Al2O3 was measured with actual weight ratios of 7.72 and 20.55 wt. %, respectively. The third phase of MgAl2O4 was found with the further addition of Al2O3at 70 wt. %; the weight ratios of Ce:YMASG, Al2O3, and MgAl2O4 were 68.756, 18.457, and 12.787 wt. %, respectively. The luminescent characters of the samples were measured by the photoluminescence spectra and electroluminescent spectra. With the increase of Al2O3 from 0 to 30 wt. %, the emission wavelength of Ce3+ plummeted from 610 to 552 nm, and the luminous efficacy of the samples increased from 35 to 65 lm/W.

4.
Front Mol Neurosci ; 16: 1125932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937050

RESUMEN

Introduction: The disintegrin and metalloproteinase 17 (ADAM17) exhibits α-secretase activity, whereby it can prevent the production of neurotoxic amyloid precursor protein-α (APP). ADAM17 is abundantly expressed in vascular endothelial cells and may act to regulate vascular homeostatic responses, including vasomotor function, vascular wall morphology, and formation of new blood vessels. The role of vascular ADAM17 in neurodegenerative diseases remains poorly understood. Here, we hypothesized that cerebrovascular ADAM17 plays a role in the pathogenesis of Alzheimer's disease (AD). Methods and results: We found that 9-10 months old APP/PS1 mice with b-amyloid accumulation and short-term memory and cognitive deficits display a markedly reduced expression of ADAM17 in cerebral microvessels. Systemic delivery and adeno-associated virus (AAV)-mediated re-expression of ADAM17 in APP/PS1 mice improved cognitive functioning, without affecting b-amyloid plaque density. In isolated and pressurized cerebral arteries of APP/PS1 mice the endothelium-dependent dilation to acetylcholine was significantly reduced, whereas the vascular smooth muscle-dependent dilation to the nitric oxide donor, sodium nitroprusside was maintained when compared to WT mice. The impaired endothelium-dependent vasodilation of cerebral arteries in APP/PS1 mice was restored to normal level by ADAM17 re-expression. The cerebral artery biomechanical properties (wall stress and elasticity) and microvascular network density was not affected by ADAM17 re-expression in the APP/PS1 mice. Additionally, proteomic analysis identified several differentially expressed molecules involved in AD neurodegeneration and neuronal repair mechanisms that were reversed by ADAM17 re-expression. Discussion: Thus, we propose that a reduced ADAM17 expression in cerebral microvessels impairs vasodilator function, which may contribute to the development of cognitive dysfunction in APP/PS1 mice, and that ADAM17 can potentially be targeted for therapeutic intervention in AD.

5.
Front Physiol ; 13: 825018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250626

RESUMEN

In type 2 diabetes (T2D) microvascular dysfunction can interfere with tissue glucose uptake thereby contributing to the development of hyperglycemia. The cell membrane caveolae orchestrate signaling pathways that include microvascular control of tissue perfusion. In this study, we examined the role of caveolae in the regulation of microvascular vasomotor function under the condition of hyperglycemia in T2D patients and rodent models. Human coronary arterioles were obtained during cardiac surgery from T2D patients, with higher perioperative glucose levels, and from normoglycemic, non-diabetic controls. The coronary arteriole responses to pharmacological agonists bradykinin and acetylcholine were similar in T2D and non-diabetic patients, however, exposure of the isolated arteries to methyl-ß-cyclodextrin (mßCD), an agent known to disrupt caveolae, reduced vasodilation to bradykinin selectively in T2D subjects and converted acetylcholine-induced vasoconstriction to dilation similarly in the two groups. Dilation to the vascular smooth muscle acting nitric oxide donor, sodium nitroprusside, was not affected by mßCD in either group. Moreover, mßCD reduced endothelium-dependent arteriolar dilation to a greater extent in hyperglycemic and obese db/db mice than in the non-diabetic controls. Mechanistically, when fed a high-fat diet (HFD), caveolin-1 knockout mice, lacking caveolae, exhibited a significantly reduced endothelium-dependent arteriolar dilation, both ex vivo and in vivo, which was accompanied by significantly higher serum glucose levels, when compared to HFD fed wild type controls. Thus, in T2D arterioles the role of caveolae in regulating endothelium-dependent arteriole dilation is altered, which appears to maintain vasodilation and mitigate the extent of hyperglycemia. While caveolae play a unique role in microvascular vasomotor regulation, under the condition of hyperglycemia arterioles from T2D subjects appear to be more susceptible for caveolae disruption-associated vasomotor dysfunction and impaired glycemic control.

6.
Geroscience ; 44(1): 349-369, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34718985

RESUMEN

Physiological and pathological vascular remodeling is uniquely driven by mechanical forces from blood flow in which wall shear stress (WSS) mechanosensing by the vascular endothelium plays a pivotal role. This study aimed to determine the novel role for a disintegrin and metalloproteinase 17 (ADAM17) in impaired WSS mechanosensing, which was hypothesized to contribute to aging-associated abnormal vascular remodeling. Without changes in arterial blood pressure and blood flow rate, skeletal muscle resistance arteries of aged mice (30-month-old vs. 12-week-old) exhibited impaired WSS mechanosensing and displayed inward hypertrophic arterial remodeling. These vascular changes were recapitulated by in vivo confined, AAV9-mediated overexpression of ADAM17 in the resistance arteries of young mice. An aging-related increase in ADAM17 expression reduced the endothelial junction level of its cleavage substrate, junctional adhesion molecule-A/F11 receptor (JAM-A/F11R). In cultured endothelial cells subjected to steady WSS ADAM17 activation or JAM-A/F11R knockdown inhibited WSS mechanosensing. The ADAM17-activation induced, impaired WSS mechanosensing was normalized by overexpression of ADAM17 cleavage resistant, mutated JAM-AV232Y both in cultured endothelial cells and in resistance arteries of aged mice, in vivo. These data demonstrate a novel role for ADAM17 in JAM-A/F11R cleavage-mediated impaired endothelial WSS mechanosensing and subsequently developed abnormal arterial remodeling in aging. ADAM17 could prove to be a key regulator of WSS mechanosensing, whereby it can also play a role in pathological vascular remodeling in diseases.


Asunto(s)
Proteína ADAM17 , Moléculas de Adhesión Celular , Molécula A de Adhesión de Unión , Receptores de Superficie Celular , Proteína ADAM17/metabolismo , Envejecimiento , Animales , Arterias , Fenómenos Biomecánicos , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales , Endotelio Vascular/metabolismo , Molécula A de Adhesión de Unión/metabolismo , Ratones , Receptores de Superficie Celular/metabolismo , Resistencia al Corte
7.
Geroscience ; 44(4): 1-14, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612774

RESUMEN

Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI). WM-penetrating and pial surface arteriolar responses to the endothelium-dependent agonist bradykinin were quantified ex vivo with videomicroscopy. Vascular endothelial nitric oxide synthase (eNOS) and NAD(P)H-oxidase (Nox1, 2 and 4 isoforms) expression were measured with quantitative PCR. Glial fibrillary acidic protein (GFAP)-labeled astrocytes were quantified by unbiased stereological approaches in regions adjacent to the sites of WM-penetrating vessel collection. Post-mortem diffusion tensor imaging (DTI) was used to measure mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA), quantitative indices of WM integrity. In contrast to pial surface arterioles, white matter-penetrating arterioles from donors diagnosed with high ADNC and mVBI exhibited a significantly reduced dilation in response to bradykinin when compared to the other groups. Expression of eNOS was reduced, whereas Nox1 expression was increased in WM arterioles in AD and mVBI cases. WM astrocyte density was increased in AD and mVBI, which correlated with a reduced vasodilation in WM arterioles. Moreover, in cases with low ADNC, bradykinin-induced WM arteriole dilation correlated with lower ADC and higher FA values. Comorbid ADNC and mVBI appear to synergistically interact to selectively impair bradykinin-induced vasodilation in WM-penetrating arterioles, which may be related to reduced nitric oxide- and excess reactive oxygen species-mediated vascular endothelial dysfunction. WM arteriole vasodilator dysfunction is associated with WM injury, as supported by reactive astrogliosis and MRI-defined disrupted WM microstructural integrity.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/complicaciones , Imagen de Difusión Tensora/métodos , Bradiquinina , Vasodilatadores
8.
Cardiovasc Res ; 117(2): 495-507, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32396609

RESUMEN

AIMS: Sodium-glucose-cotransporter-2 inhibitors showed favourable cardiovascular outcomes, but the underlying mechanisms are still elusive. This study investigated the mechanisms of empagliflozin in human and murine heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS: The acute mechanisms of empagliflozin were investigated in human myocardium from patients with HFpEF and murine ZDF obese rats, which were treated in vivo. As shown with immunoblots and ELISA, empagliflozin significantly suppressed increased levels of ICAM-1, VCAM-1, TNF-α, and IL-6 in human and murine HFpEF myocardium and attenuated pathological oxidative parameters (H2O2, 3-nitrotyrosine, GSH, lipid peroxide) in both cardiomyocyte cytosol and mitochondria in addition to improved endothelial vasorelaxation. In HFpEF, we found higher oxidative stress-dependent activation of eNOS leading to PKGIα oxidation. Interestingly, immunofluorescence imaging and electron microscopy revealed that oxidized PKG1α in HFpEF appeared as dimers/polymers localized to the outer-membrane of the cardiomyocyte. Empagliflozin reduced oxidative stress/eNOS-dependent PKGIα oxidation and polymerization resulting in a higher fraction of PKGIα monomers, which translocated back to the cytosol. Consequently, diminished NO levels, sGC activity, cGMP concentration, and PKGIα activity in HFpEF increased upon empagliflozin leading to improved phosphorylation of myofilament proteins. In skinned HFpEF cardiomyocytes, empagliflozin improved cardiomyocyte stiffness in an anti-oxidative/PKGIα-dependent manner. Monovariate linear regression analysis confirmed the correlation of oxidative stress and PKGIα polymerization with increased cardiomyocyte stiffness and diastolic dysfunction of the HFpEF patients. CONCLUSION: Empagliflozin reduces inflammatory and oxidative stress in HFpEF and thereby improves the NO-sGC-cGMP-cascade and PKGIα activity via reduced PKGIα oxidation and polymerization leading to less pathological cardiomyocyte stiffness.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Células Endoteliales/efectos de los fármacos , Glucósidos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Anciano , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/inmunología , Femenino , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/inmunología , Ratas Zucker , Transducción de Señal
9.
Circ Heart Fail ; 12(8): e005762, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31525084

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is often manifested as impaired cardiovascular reserve. We sought to determine if conducted vasodilation, which coordinates microvascular resistance longitudinally to match tissue metabolic demand, becomes compromised in HFpEF. We hypothesized that the metabolic vasodilator adenosine facilitates and that inhibition of ADK (adenosine kinase) augments conducted vasodilation for a more efficient myocardial perfusion and improved left ventricle (LV) diastolic function in HFpEF. METHODS AND RESULTS: We assessed conducted vasodilation in obese ZSF1 rats that develop LV diastolic dysfunction and is used to model human HFpEF. Additionally, conducted vasodilation was measured in arterioles isolated from the right atrial appendages of patients with HFpEF. We found a markedly reduced conducted vasodilation both in obese ZSF1 rats and in patients with HFpEF. Impaired conducted vasodilation was accompanied by increased vascular ADK expression. Isolated rat and human arterioles incubated with adenosine (10 nmol/L) or ADK inhibitor ABT-702 (0.1 µmol/L) both displayed augmented conducted vasodilation. Treatment of obese ZSF1 rats with ABT-702 (1.5 mg/kg, IP for 8 weeks) prevented LV diastolic dysfunction, and in a crossover design augmented conducted vasodilation and improved LV diastolic function. ABT-702 treated obese ZSF1 rats exhibited reduced expression of myocardial carbonic anhydrase 9 and collagen, surrogate markers of myocardial hypoxia. CONCLUSIONS: Upregulation of vascular ADK mitigates adenosine-facilitated conducted vasodilation in obese ZSF1 rats and in patients with HFpEF. We propose that pharmacological inhibition of ADK could be beneficial for therapeutic augmentation of conducted vasodilation, thereby improving tissue perfusion and LV diastolic function in HFpEF.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Insuficiencia Cardíaca/complicaciones , Morfolinas/farmacología , Pirimidinas/farmacología , Volumen Sistólico/fisiología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/fisiología , Animales , Diástole , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , Persona de Mediana Edad , Ratas , Ratas Zucker , Resistencia Vascular/efectos de los fármacos , Vasodilatación/fisiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos
10.
Nat Commun ; 9(1): 258, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343722

RESUMEN

Glycan-binding proteins (GBPs) play critical roles in diverse cellular functions such as cell adhesion, signal transduction and immune response. Studies of the interaction between GBPs and glycans have been hampered by the availability of high throughput and high-content technologies. Here we report multiplex glycan bead array (MGBA) that allows simultaneous analyses of 384 samples and up to 500 glycans in a single assay. The specificity, sensitivity and reproducibility of MGBA are evaluated using 39 plant lectins, 13 recombinant anti-glycan antibodies, and mammalian GBPs. We demonstrate the utility of this platform by the analyses of natural anti-glycan IgM and IgG antibodies in 961 human serum samples and the discovery of anti-glycan antibody biomarkers for ovarian cancer. Our data indicate that the MGBA platform is particularly suited for large population-based studies that require the analyses of large numbers of samples and glycans.


Asunto(s)
Biomarcadores de Tumor/análisis , Polisacáridos/química , Análisis por Matrices de Proteínas/métodos , Anticuerpos , Biomarcadores de Tumor/química , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Plantas/metabolismo , Polisacáridos/inmunología , Polisacáridos/metabolismo , Bibliotecas de Moléculas Pequeñas
11.
Asian Pac J Cancer Prev ; 15(11): 4423-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24969863

RESUMEN

A novel monoclonal antibody (mAb), known as AC10364, was identified from an antibody library generated by immunization of mice with human carcinoma cells. The mAb recognized proteins in lysates from multiple carcinoma cell lines. Cell cytotoxicity assays showed that AC10364 significantly inhibited cell growth and induced apoptosis in multiple carcinoma cell lines, including Bel/fu, KATO-III and A2780. Compared with mAb AC10364 or chemotherapeutic drugs alone, the combination of mAb AC10364 with chemotherapeutic drugs demonstrated enhanced growth inhibitory effects on carcinoma cells. These results suggest that mAb AC10364 is a promising candidate for cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Animales , Carcinoma/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C
12.
Am J Transl Res ; 6(6): 850-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25628795

RESUMEN

DKK1 is a secreted glycoprotein that inhibits Wnt/ß-catenin signaling but may up-regulate the nonconanical Wnt signaling. Consistent with its inhibitory function in Wnt/ß-catenin signaling, aberrant DKK1 expression has been observed in many types of human cancers, while contradicting findings have been reported in other studies. There are also several studies on serum DKK1 levels in various cancers with conflicting findings. In the present study, serum DKK1 was determined in 217 non- small cell lung cancer (NSCLC) patients, 35 small cell lung cancer (SCLC) patients and 286 matched healthy controls using a commercially available ELISA assay kit. Compared to healthy controls, serum DKK1 level was significantly lower in NSCLC (p < 10(-28)) and SCLC (p <10(-4)) patients. Interestingly, serum DKK1 level was higher in NSCLC patients in stage IV (p < 0.0005), with lymph node involvement (p < 0.0002) or with metastasis (p < 0.0001), suggesting that DKK1 may promote metastasis. After surgery and/or chemotherapy, serum DKK1 level is rapidly increased and reached levels observed in healthy controls in most patients. The degree of post therapeutic DKK1 increase varied in different treatment regimens. Our results thus provide strong evidence for the reduced levels of serum DKK1 in both types of lung cancer. However, in the context of all published studies, DKK1 appears to have a dichotomous role in cancer and its effect in a given cancer type or even a given cancer patient is likely to depend on the molecular context of the patient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA