Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Annu Rev Med ; 74: 427-441, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36450281

RESUMEN

Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.


Asunto(s)
Enfermedades Pulmonares , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/metabolismo , Proteínas/metabolismo
2.
Am J Respir Crit Care Med ; 209(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734031

RESUMEN

Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Prior studies implicated proxy-defined donor smoking as a risk factor for PGD and mortality. Objectives: We aimed to more accurately assess the impact of donor smoke exposure on PGD and mortality using quantitative smoke exposure biomarkers. Methods: We performed a multicenter prospective cohort study of lung transplant recipients enrolled in the Lung Transplant Outcomes Group cohort between 2012 and 2018. PGD was defined as grade 3 at 48 or 72 hours after lung reperfusion. Donor smoking was defined using accepted thresholds of urinary biomarkers of nicotine exposure (cotinine) and tobacco-specific nitrosamine (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL]) in addition to clinical history. The donor smoking-PGD association was assessed using logistic regression, and survival analysis was performed using inverse probability of exposure weighting according to smoking category. Measurements and Main Results: Active donor smoking prevalence varied by definition, with 34-43% based on urinary cotinine, 28% by urinary NNAL, and 37% by clinical documentation. The standardized risk of PGD associated with active donor smoking was higher across all definitions, with an absolute risk increase of 11.5% (95% confidence interval [CI], 3.8% to 19.2%) by urinary cotinine, 5.7% (95% CI, -3.4% to 14.9%) by urinary NNAL, and 6.5% (95% CI, -2.8% to 15.8%) defined clinically. Donor smoking was not associated with differential post-lung transplant survival using any definition. Conclusions: Donor smoking associates with a modest increase in PGD risk but not with increased recipient mortality. Use of lungs from smokers is likely safe and may increase lung donor availability. Clinical trial registered with www.clinicaltrials.gov (NCT00552357).


Asunto(s)
Trasplante de Pulmón , Disfunción Primaria del Injerto , Fumar , Donantes de Tejidos , Humanos , Biomarcadores , Cotinina , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/epidemiología , Estudios Prospectivos , Fumar/efectos adversos
3.
Clin Infect Dis ; 78(3): 775-784, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37815489

RESUMEN

BACKGROUND: Pneumonia is a common cause of morbidity and mortality, yet a causative pathogen is identified in a minority of cases. Plasma microbial cell-free DNA sequencing may improve diagnostic yield in immunocompromised patients with pneumonia. METHODS: In this prospective, multicenter, observational study of immunocompromised adults undergoing bronchoscopy to establish a pneumonia etiology, plasma microbial cell-free DNA sequencing was compared to standardized usual care testing. Pneumonia etiology was adjudicated by a blinded independent committee. The primary outcome, additive diagnostic value, was assessed in the Per Protocol population (patients with complete testing results and no major protocol deviations) and defined as the percent of patients with an etiology of pneumonia exclusively identified by plasma microbial cell-free DNA sequencing. Clinical additive diagnostic value was assessed in the Per Protocol subgroup with negative usual care testing. RESULTS: Of 257 patients, 173 met Per Protocol criteria. A pneumonia etiology was identified by usual care in 52/173 (30.1%), plasma microbial cell-free DNA sequencing in 49/173 (28.3%) and the combination of both in 73/173 (42.2%) patients. Plasma microbial cell-free DNA sequencing exclusively identified an etiology of pneumonia in 21/173 patients (additive diagnostic value 12.1%, 95% confidence interval [CI], 7.7% to 18.0%, P < .001). In the Per Protocol subgroup with negative usual care testing, plasma microbial cell-free DNA sequencing identified a pneumonia etiology in 21/121 patients (clinical additive diagnostic value 17.4%, 95% CI, 11.1% to 25.3%). CONCLUSIONS: Non-invasive plasma microbial cell-free DNA sequencing significantly increased diagnostic yield in immunocompromised patients with pneumonia undergoing bronchoscopy and extensive microbiologic and molecular testing. CLINICAL TRIALS REGISTRATION: NCT04047719.


Asunto(s)
Neumonía , Adulto , Humanos , Estudios Prospectivos , Neumonía/etiología , Análisis de Secuencia de ADN , Huésped Inmunocomprometido
4.
Respir Res ; 25(1): 58, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273290

RESUMEN

BACKGROUND: The circulating metabolome, reflecting underlying cellular processes and disease biology, has not been fully characterized in patients with idiopathic pulmonary fibrosis (IPF). We evaluated whether circulating levels of metabolites correlate with the presence of IPF, with the severity of IPF, or with the risk of clinically relevant outcomes among patients with IPF. METHODS: We analyzed enrollment plasma samples from 300 patients with IPF in the IPF-PRO Registry and 100 individuals without known lung disease using a set of targeted metabolomics and clinical analyte modules. Linear regression was used to compare metabolite and clinical analyte levels between patients with IPF and controls and to determine associations between metabolite levels and measures of disease severity in patients with IPF. Unadjusted and adjusted univariable Cox regression models were used to evaluate associations between circulating metabolites and the risk of mortality or disease progression among patients with IPF. RESULTS: Levels of 64 metabolites and 5 clinical analytes were significantly different between patients with IPF and controls. Among analytes with greatest differences were non-esterified fatty acids, multiple long-chain acylcarnitines, and select ceramides, levels of which were higher among patients with IPF versus controls. Levels of the branched-chain amino acids valine and leucine/isoleucine were inversely correlated with measures of disease severity. After adjusting for clinical factors known to influence outcomes, higher levels of the acylcarnitine C:16-OH/C:14-DC were associated with all-cause mortality, lower levels of the acylcarnitine C16:1-OH/C14:1DC were associated with all-cause mortality, respiratory death, and respiratory death or lung transplant, and higher levels of the sphingomyelin d43:2 were associated with the risk of respiratory death or lung transplantation. CONCLUSIONS: IPF has a distinct circulating metabolic profile characterized by increased levels of non-esterified fatty acids, long-chain acylcarnitines, and ceramides, which may suggest a more catabolic environment that enhances lipid mobilization and metabolism. We identified select metabolites that were highly correlated with measures of disease severity or the risk of disease progression and that may be developed further as biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov; No: NCT01915511; URL: www. CLINICALTRIALS: gov .


Asunto(s)
Carnitina , Fibrosis Pulmonar Idiopática , Humanos , Carnitina/análogos & derivados , Ceramidas , Progresión de la Enfermedad , Ácidos Grasos , Fibrosis Pulmonar Idiopática/metabolismo , Metaboloma , Sistema de Registros
5.
Annu Rev Med ; 72: 135-149, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33113336

RESUMEN

Lung transplantation improves survival and quality of life in patients with advanced pulmonary disease. Over the past several decades, the volume of lung transplants has grown substantially, with increasing transplantation of older and acutely ill individuals facilitated by improved utilization and preservation of available donor organs. Other advances include improvements in the diagnosis and mechanistic understanding of frequent post-transplant complications, such as primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD). CLAD occurs as a result of the host immune response to the allograft and is the principal factor limiting long-term survival after lung transplantation. Two distinct clinical phenotypes of CLAD have emerged, bronchiolitis obliterans syndrome and restrictive allograft syndrome, and this distinction has enabled further understanding of underlying immune mechanisms. Building on these advances, ongoing studies are exploring novel approaches to diagnose, prevent, and treat CLAD. Such studies are necessary to improve long-term outcomes for lung transplant recipients.


Asunto(s)
Enfermedades Pulmonares/cirugía , Trasplante de Pulmón/métodos , Pulmón/cirugía , Preservación de Órganos/métodos , Disfunción Primaria del Injerto/epidemiología , Salud Global , Humanos , Incidencia , Factores de Riesgo
6.
Respir Res ; 24(1): 209, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612608

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease characterised by decline in lung function. We evaluated trajectories of forced vital capacity (FVC) and diffusing capacity (DLco) in a cohort of patients with IPF. METHODS: Patients with IPF that was diagnosed or confirmed at the enrolling centre in the previous 6 months were enrolled into the IPF-PRO Registry between June 2014 and October 2018. Patients were followed prospectively, with lung function data collected as part of routine clinical care. Mean trajectories of FVC and DLco % predicted in all patients and in subgroups by characteristics assessed at enrolment were estimated using a joint model that accounted for factors such as disease severity and visit patterns. RESULTS: Of 1002 patients in the registry, 941 had ≥ 1 FVC and/or DLco measurement after enrolment. The median (Q1, Q3) follow-up period was 35.1 (18.9, 47.2) months. Overall, mean estimated declines in FVC and DLco % predicted were 2.8% and 2.9% per year, respectively. There was no evidence that the mean trajectories of FVC or DLco had a non-linear relationship with time at the population level. Patients who were male, white, had a family history of ILD, were using oxygen, or had prior/current use of antifibrotic therapy at enrolment had greater rates of decline in FVC % predicted. Patients who were male or white had greater rates of decline in DLco % predicted. CONCLUSIONS: Data from the IPF-PRO Registry suggest a constant rate of decline in lung function over a prolonged period, supporting the inexorably progressive nature of IPF. A graphical abstract summarising the data in this manuscript is available at: https://www.usscicomms.com/respiratory/IPF-PRORegistry_LungFunctionTrajectories . TRIAL REGISTRATION: NCT01915511.


Asunto(s)
Fibrosis Pulmonar Idiopática , Femenino , Humanos , Masculino , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón , Oxígeno , Gravedad del Paciente , Sistema de Registros
7.
Respir Res ; 24(1): 141, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37344825

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix in the pulmonary interstitium and progressive functional decline. We hypothesized that integration of multi-omics data would identify clinically meaningful molecular endotypes of IPF. METHODS: The IPF-PRO Registry is a prospective registry of patients with IPF. Proteomic and transcriptomic (including total RNA [toRNA] and microRNA [miRNA]) analyses were performed using blood collected at enrollment. Molecular data were integrated using Similarity Network Fusion, followed by unsupervised spectral clustering to identify molecular subtypes. Cox proportional hazards models tested the relationship between these subtypes and progression-free and transplant-free survival. The molecular subtypes were compared to risk groups based on a previously described 52-gene (toRNA expression) signature. Biological characteristics of the molecular subtypes were evaluated via linear regression differential expression and canonical pathways (Ingenuity Pathway Analysis [IPA]) over-representation analyses. RESULTS: Among 232 subjects, two molecular subtypes were identified. Subtype 1 (n = 105, 45.3%) and Subtype 2 (n = 127, 54.7%) had similar distributions of age (70.1 +/- 8.1 vs. 69.3 +/- 7.6 years; p = 0.31) and sex (79.1% vs. 70.1% males, p = 0.16). Subtype 1 had more severe disease based on composite physiologic index (CPI) (55.8 vs. 51.2; p = 0.002). After adjusting for CPI and antifibrotic treatment at enrollment, subtype 1 experienced shorter progression-free survival (HR 1.79, 95% CI 1.28,2.56; p = 0.0008) and similar transplant-free survival (HR 1.30, 95% CI 0.87,1.96; p = 0.20) as subtype 2. There was little agreement in the distribution of subjects to the molecular subtypes and the risk groups based on 52-gene signature (kappa = 0.04, 95% CI= -0.08, 0.17), and the 52-gene signature risk groups were associated with differences in transplant-free but not progression-free survival. Based on heatmaps and differential expression analyses, proteins and miRNAs (but not toRNA) contributed to classification of subjects to the molecular subtypes. The IPA showed enrichment in pulmonary fibrosis-relevant pathways, including mTOR, VEGF, PDGF, and B-cell receptor signaling. CONCLUSIONS: Integration of transcriptomic and proteomic data from blood enabled identification of clinically meaningful molecular endotypes of IPF. If validated, these endotypes could facilitate identification of individuals likely to experience disease progression and enrichment of clinical trials. TRIAL REGISTRATION: NCT01915511.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Masculino , Humanos , Femenino , Proteómica , Multiómica , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Pulmón , Progresión de la Enfermedad
8.
Am J Respir Crit Care Med ; 206(1): 56-69, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417304

RESUMEN

Rationale: Genetic studies of idiopathic pulmonary fibrosis (IPF) have improved our understanding of this disease, but not all causal loci have been identified. Objectives: To identify genes enriched with rare deleterious variants in IPF and familial pulmonary fibrosis. Methods: We performed gene burden analysis of whole-exome data, tested single variants for disease association, conducted KIF15 (kinesin family member 15) functional studies, and examined human lung single-cell RNA sequencing data. Measurements and Main Results: Gene burden analysis of 1,725 cases and 23,509 control subjects identified heterozygous rare deleterious variants in KIF15, a kinesin involved in spindle separation during mitosis, and three telomere-related genes (TERT [telomerase reverse transcriptase], RTEL1 [regulator of telomere elongation helicase 1], and PARN [poly(A)-specific ribonuclease]). KIF15 was implicated in autosomal-dominant models of rare deleterious variants (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.7-8.8; P = 2.55 × 10-7) and rare protein-truncating variants (OR, 7.6; 95% CI, 3.3-17.1; P = 8.12 × 10-7). Meta-analyses of the discovery and replication cohorts, including 2,966 cases and 29,817 control subjects, confirm the involvement of KIF15 plus the three telomere-related genes. A common variant within a KIF15 intron (rs74341405; OR, 1.6; 95% CI, 1.4-1.9; P = 5.63 × 10-10) is associated with IPF risk, confirming a prior report. Lymphoblastoid cells from individuals heterozygous for the common variant have decreased KIF15 and reduced rates of cell growth. Cell proliferation is dependent on KIF15 in the presence of an inhibitor of Eg5/KIF11, which has partially redundant function. KIF15 is expressed specifically in replicating human lung cells and shows diminished expression in replicating epithelial cells of patients with IPF. Conclusions: Both rare deleterious variants and common variants in KIF15 link a nontelomerase pathway of cell proliferation with IPF susceptibility.


Asunto(s)
Fibrosis Pulmonar Idiopática , Cinesinas , Telomerasa , Exoma , Humanos , Fibrosis Pulmonar Idiopática/genética , Cinesinas/genética , Telomerasa/genética , Telómero
9.
Am J Respir Crit Care Med ; 206(12): 1495-1507, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35876129

RESUMEN

Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function. Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD). Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. Ten transplant recipients from a separate transplant center provided samples before and after antireflux Nissen fundoplication surgery. Microbial community composition and density were measured using 16S ribosomal RNA gene sequencing and quantitative polymerase chain reaction, respectively, and inflammatory markers and bile acids were quantified. Measurements and Main Results: We observed a range of allograft community composition with three discernible types (labeled community state types [CSTs] 1-3). Transplant recipients with GERD were more likely to have CST1, characterized by high bacterial density and relative abundance of the oropharyngeal colonizing genera Prevotella and Veillonella. GERD was associated with more frequent transitions to CST1. CST1 was associated with lower inflammatory cytokine concentrations than pathogen-dominated CST3 across the range of microbial densities observed. Cox proportional hazard models revealed associations between CST3 and the development of ALAD/CLAD. Nissen fundoplication decreased bacterial load and proinflammatory cytokines. Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.


Asunto(s)
Reflujo Gastroesofágico , Trasplante de Pulmón , Microbiota , Humanos , Estudios Retrospectivos , Reflujo Gastroesofágico/complicaciones , Pulmón , Inflamación , Aloinjertos
10.
BMC Pulm Med ; 23(1): 414, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904125

RESUMEN

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition of somatic mutations that leads to an expanded blood cell clone, has been associated with development of a pro-inflammatory state. An enhanced or dysregulated inflammatory response may contribute to rejection after lung transplantation, however the prevalence of CHIP in lung recipients and influence of CHIP on allograft outcomes is unknown. METHODS: We analyzed whole-exome sequencing data in 279 lung recipients to detect CHIP, defined by pre-specified somatic mutations in 74 genes known to promote clonal expansion of hematopoietic stem cells. We compared the burden of acute rejection (AR) over the first post-transplant year in lung recipients with vs. without CHIP using multivariable ordinal regression. Multivariate Cox proportional hazards models were used to assess the association between CHIP and CLAD-free survival. An exploratory analysis evaluated the association between the number of CHIP-associated variants and chronic lung allograft dysfunction (CLAD)-free survival. RESULTS: We detected 64 CHIP-associated mutations in 45 individuals (15.7%), most commonly in TET2 (10.8%), DNMT3A (9.2%), and U2AF1 (9.2%). Patients with CHIP tended to be older but did not significantly differ from patients without CHIP in terms of race or native lung disease. Patients with CHIP did not have a higher incidence of AR over the first post-transplant year (p = 0.45) or a significantly increased risk of death or CLAD (adjusted HR 1.25, 95% CI 0.88-1.78). We did observe a significant association between the number of CHIP variants and CLAD-free survival, specifically patients with 2 or more CHIP-associated variants had an increased risk for death or CLAD (adjusted HR 3.79, 95% CI 1.98-7.27). CONCLUSIONS: Lung recipients have a higher prevalence of CHIP and a larger variety of genes with CHIP-associated mutations compared with previous reports for the general population. CHIP did not increase the risk of AR, CLAD, or death in lung recipients.


Asunto(s)
Hematopoyesis Clonal , Trasplante de Pulmón , Humanos , Receptores de Trasplantes , Prevalencia , Pulmón , Trasplante de Pulmón/efectos adversos
11.
Am J Transplant ; 22(9): 2169-2179, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35634722

RESUMEN

Histopathologic lung allograft injuries are putative harbingers for chronic lung allograft dysfunction (CLAD). However, the mechanisms responsible are not well understood. CXCL9 and CXCL10 are potent chemoattractants of mononuclear cells and potential propagators of allograft injury. We hypothesized that these chemokines would be quantifiable in plasma, and would associate with subsequent CLAD development. In this prospective multicenter study, we evaluated 721 plasma samples for CXCL9/CXCL10 levels from 184 participants at the time of transbronchial biopsies during their first-year post-transplantation. We determined the association between plasma chemokines, histopathologic injury, and CLAD risk using Cox proportional hazards models. We also evaluated CXCL9/CXCL10 levels in bronchoalveolar lavage (BAL) fluid and compared plasma to BAL with respect to CLAD risk. Plasma CXCL9/CXCL10 levels were elevated during the injury patterns associated with CLAD, acute rejection, and acute lung injury, with a dose-response relationship between chemokine levels and CLAD risk. Importantly, there were strong interactions between injury and plasma CXCL9/CXCL10, where histopathologic injury associated with CLAD only in the presence of elevated plasma chemokines. We observed similar associations and interactions with BAL CXCL9/CXCL10 levels. Elevated plasma CXCL9/CXCL10 during allograft injury may contribute to CLAD pathogenesis and has potential as a minimally invasive immune monitoring biomarker.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Pulmón , Aloinjertos , Biomarcadores , Quimiocina CXCL10 , Quimiocina CXCL9 , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Humanos , Pulmón , Trasplante de Pulmón/efectos adversos , Estudios Prospectivos
12.
Am J Transplant ; 22(12): 3002-3011, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36031951

RESUMEN

We determined prognostic implications of acute lung injury (ALI) and organizing pneumonia (OP), including timing relative to transplantation, in a multicenter lung recipient cohort. We sought to understand clinical risks that contribute to development of ALI/OP. We analyzed prospective, histologic diagnoses of ALI and OP in 4786 lung biopsies from 803 adult lung recipients. Univariable Cox regression was used to evaluate the impact of early (≤90 days) or late (>90 days) posttransplant ALI or OP on risk for chronic lung allograft dysfunction (CLAD) or death/retransplantation. These analyses demonstrated late ALI/OP conferred a two- to threefold increase in the hazards of CLAD or death/retransplantation; there was no association between early ALI/OP and these outcomes. To determine risk factors for late ALI/OP, we used univariable Cox models considering donor/recipient characteristics and posttransplant events as candidate risks. Grade 3 primary graft dysfunction, higher degree of donor/recipient human leukocyte antigen mismatch, bacterial or viral respiratory infection, and an early ALI/OP event were significantly associated with increased late ALI/OP risk. These data from a contemporary, multicenter cohort underscore the prognostic implications of ALI/OP on lung recipient outcomes, clarify the importance of the timing of these events, and identify clinical risks to target for ALI/OP prevention.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Pulmón , Neumonía , Adulto , Humanos , Estudios Prospectivos , Pronóstico , Estudios Retrospectivos , Trasplante de Pulmón/efectos adversos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Pulmón , Neumonía/epidemiología , Neumonía/etiología , Neumonía/patología , Factores de Riesgo , Estudios de Cohortes
13.
Lung ; 200(1): 11-18, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066606

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease with a variable clinical course. Biomarkers that predict patient outcomes are needed. We leveraged data from 300 patients in the multicenter IPF-PRO Registry to determine associations between circulating proteins and the composite outcome of respiratory death or lung transplant. Plasma collected at enrollment was analyzed using aptamer-based proteomics (1305 proteins). Over a median follow-up of 30.4 months, there were 76 respiratory deaths and 26 lung transplants. In unadjusted univariable analyses, 61 proteins were significantly associated with the outcome (hazard ratio > 2 or < 0.5, corrected p ≤ 0.05). In multivariable analyses, a set of 4 clinical measures and 47 unique proteins predicted the probability of respiratory death or lung transplant with an optimism-corrected C-index of 0.76. Our results suggest that select circulating proteins strongly associate with the risk of mortality in patients with IPF and confer information independent of clinical measures.


Asunto(s)
Fibrosis Pulmonar Idiopática , Trasplante de Pulmón , Estudios de Cohortes , Humanos , Proteómica , Sistema de Registros
14.
Am J Transplant ; 21(8): 2864-2870, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33840158

RESUMEN

Vaccine-preventable viral infections are associated with increased risk of morbidity and mortality in post-transplant patients on immunosuppression regimens. Therefore, we studied rates of immunity against vaccine-preventable viruses in lung transplantation (LTx) candidates and their associations with underlying lung disease and clinical characteristics. We retrospectively studied 1025 consecutive adult patients who underwent first-time evaluation for LTx at a single center between January 2016 and October 2018. Viruses studied included varicella zoster (VZV), measles, and mumps. Young age (17-48 years old) was negatively associated with immunity for VZV (OR 4.54, p < .001), measles (OR 15.45, p < .001) and mumps (OR 3.1, p < .001), as compared to those 65+. Many LTx candidates with cystic fibrosis (CF) had undetectable virus-specific antibody titers including: 13.5% for VZV, 19.1% for measles, and 15.7% for mumps with significant odds of undetectable titers for VZV (OR 4.54, p < .001) and measles (OR 2.32, p = .010) as compared to those without CF. Therefore, a substantial number of patients undergoing LTx evaluation had undetectable virus-specific antibody titers. Our results emphasize the importance of screening for immunity to vaccine-preventable infections in this population and the need for revaccination in selected patients to boost their humoral immunity prior to transplantation.


Asunto(s)
Varicela , Trasplante de Pulmón , Sarampión , Paperas , Rubéola (Sarampión Alemán) , Adolescente , Adulto , Anticuerpos Antivirales , Humanos , Trasplante de Pulmón/efectos adversos , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
15.
Am J Transplant ; 21(10): 3401-3410, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33840162

RESUMEN

The histopathologic diagnosis of acute allograft injury is prognostically important in lung transplantation with evidence demonstrating a strong and consistent association between acute rejection (AR), acute lung injury (ALI), and the subsequent development of chronic lung allograft dysfunction (CLAD). The pathogenesis of these allograft injuries, however, remains poorly understood. CXCL9 and CXCL10 are CXC chemokines induced by interferon-γ and act as potent chemoattractants of mononuclear cells. We hypothesized that these chemokines are involved in the mononuclear cell recruitment associated with AR and ALI. We further hypothesized that the increased activity of these chemokines could be quantified as increased levels in the bronchoalveolar lavage fluid. In this prospective multicenter study, we evaluate the incidence of histopathologic allograft injury development during the first-year post-transplant and measure bronchoalveolar CXCL9 and CXCL10 levels at the time of the biopsy. In multivariable models, CXCL9 levels were 1.7-fold and 2.1-fold higher during AR and ALI compared with "normal" biopsies without histopathology. Similarly, CXCL10 levels were 1.6-fold and 2.2-fold higher during these histopathologies, respectively. These findings support the association of CXCL9 and CXCL10 with episodes of AR and ALI and provide potential insight into the pathogenesis of these deleterious events.


Asunto(s)
Quimiocina CXCL10 , Rechazo de Injerto , Aloinjertos , Quimiocina CXCL9 , Rechazo de Injerto/etiología , Pulmón , Estudios Prospectivos
16.
Am J Respir Crit Care Med ; 202(4): 576-585, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32379979

RESUMEN

Rationale: Acute rejection, manifesting as lymphocytic inflammation in a perivascular (acute perivascular rejection [AR]) or peribronchiolar (lymphocytic bronchiolitis [LB]) distribution, is common in lung transplant recipients and increases the risk for chronic graft dysfunction.Objectives: To evaluate clinical factors associated with biopsy-proven acute rejection during the first post-transplant year in a present-day, five-center lung transplant cohort.Methods: We analyzed prospective diagnoses of AR and LB from over 2,000 lung biopsies in 400 newly transplanted adult lung recipients. Because LB without simultaneous AR was rare, our analyses focused on risk factors for AR. Multivariable Cox proportional hazards models were used to assess donor and recipient factors associated with the time to the first AR occurrence.Measurements and Main Results: During the first post-transplant year, 53.3% of patients experienced at least one AR episode. Multivariable proportional hazards analyses accounting for enrolling center effects identified four or more HLA mismatches (hazard ratio [HR], 2.06; P ≤ 0.01) as associated with increased AR hazards, whereas bilateral transplantation (HR, 0.57; P ≤ 0.01) was associated with protection from AR. In addition, Wilcoxon rank-sum analyses demonstrated bilateral (vs. single) lung recipients, and those with fewer than four (vs. more than four) HLA mismatches demonstrated reduced AR frequency and/or severity during the first post-transplant year.Conclusions: We found a high incidence of AR in a contemporary multicenter lung transplant cohort undergoing consistent biopsy sampling. Although not previously recognized, the finding of reduced AR in bilateral lung recipients is intriguing, warranting replication and mechanistic exploration.


Asunto(s)
Bronquiolitis/epidemiología , Rechazo de Injerto/epidemiología , Trasplante de Pulmón , Complicaciones Posoperatorias/epidemiología , Enfermedad Aguda , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Factores de Tiempo
17.
Am J Transplant ; 20(3): 825-833, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31665560

RESUMEN

Chronic lung allograft dysfunction (CLAD), a condition of excess matrix deposition and airways fibrosis, limits survival after lung transplantation. Amphiregulin (Areg) is an epidermal growth factor receptor (EGFR) ligand suggested to regulate airway injury and repair. We sought to determine whether Areg expression increases in CLAD, localize the cellular source of Areg induction in CLAD, and assess its effects on airway matrix deposition. Lung fluid Areg protein was quantified in patients with or without CLAD. In situ hybridization was performed to localize Areg and EGFR transcript in CLAD and normal lung tissue. Expression of hyaluronan, a matrix constituent that accumulates in CLAD, was measured in Areg-exposed bronchial epithelial cells in the presence or absence of an EGFR inhibitor. We demonstrated that lung fluid Areg protein was significantly increased in CLAD in a discovery and replication cohort. Areg and EGFR transcripts were abundantly expressed within CLAD tissue, localized to basally distributed airway epithelial cells overlying fibrotic regions. Areg-exposed bronchial epithelial cells increased hyaluronan and hyaluronan synthase expression in an EGFR-dependent manner. Collectively, these novel observations suggest that Areg contributes to airway remodeling and CLAD. Moreover these data implicate a role for EGFR signaling in CLAD pathogenesis, suggesting novel therapeutic targets.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Trasplante de Pulmón , Aloinjertos , Anfirregulina/genética , Humanos , Pulmón , Trasplante de Pulmón/efectos adversos
18.
Am J Transplant ; 20(6): 1489-1494, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342596

RESUMEN

Long-term survival after lung transplant lags behind that of other commonly transplanted organs, reflecting the current incomplete understanding of the mechanisms involved in the development of posttransplant lung injury, rejection, infection, and chronic allograft dysfunction. To address this unmet need, 2 ongoing National Institute of Allergy and Infectious Disease funded studies through the Clinical Trials in Organ Transplant Consortium (CTOT) CTOT-20 and CTOT-22 were dedicated to understanding the clinical factors and biological mechanisms that drive chronic lung allograft dysfunction and those that maintain cytomegalovirus polyfunctional protective immunity. The CTOT-20 and CTOT-22 studies enrolled 800 lung transplant recipients at 5 North American centers over 3 years. Given the number and complexity of subjects included, CTOT-20 and CTOT-22 utilized innovative data transfers and capitalized on patient-entered data collection to minimize site manual data entry. The data were coupled with an extensive biosample collection strategy that included DNA, RNA, plasma, serum, bronchoalveolar lavage fluid, and bronchoalveolar lavage cell pellet. This Special Article describes the CTOT-20 and CTOT-22 protocols, data and biosample strategy, initial results, and lessons learned through study execution.


Asunto(s)
Trasplante de Pulmón , Trasplante de Órganos , Líquido del Lavado Bronquioalveolar , Citomegalovirus , Rechazo de Injerto/etiología , Humanos , Trasplante de Pulmón/efectos adversos , Trasplante de Órganos/efectos adversos , Receptores de Trasplantes
19.
BMC Pulm Med ; 20(1): 64, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171287

RESUMEN

BACKGROUND: Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) play important roles in the turnover of extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). This study aimed to determine the utility of circulating MMPs and TIMPs in distinguishing patients with IPF from controls and to explore associations between MMPs/TIMPs and measures of disease severity in patients with IPF. METHODS: The IPF cohort (n = 300) came from the IPF-PRO Registry, an observational multicenter registry of patients with IPF that was diagnosed or confirmed at the enrolling center in the past 6 months. Controls (n = 100) without known lung disease came from a population-based registry. Generalized linear models were used to compare circulating concentrations of MMPs 1, 2, 3, 7, 8, 9, 12, and 13 and TIMPs 1, 2, and 4 between patients with IPF and controls, and to investigate associations between circulating levels of these proteins and measures of IPF severity. Multivariable models were fit to identify the MMP/TIMPs that best distinguished patients with IPF from controls. RESULTS: All the MMP/TIMPs analyzed were present at significantly higher levels in patients with IPF compared with controls except for TIMP2. Multivariable analyses selected MMP8, MMP9 and TIMP1 as top candidates for distinguishing patients with IPF from controls. Higher concentrations of MMP7, MMP12, MMP13 and TIMP4 were significantly associated with lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted and higher composite physiologic index (worse disease). MMP9 was associated with the composite physiologic index. No MMP/TIMPs were associated with forced vital capacity % predicted. CONCLUSIONS: Circulating MMPs and TIMPs were broadly elevated among patients with IPF. Select MMP/TIMPs strongly associated with measures of disease severity. Our results identify potential MMP/TIMP targets for further development as disease-related biomarkers.


Asunto(s)
Fibrosis Pulmonar Idiopática/sangre , Metaloproteinasas de la Matriz Secretadas/sangre , Inhibidores Tisulares de Metaloproteinasas/sangre , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Humanos , Fibrosis Pulmonar Idiopática/patología , Modelos Lineales , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Valor Predictivo de las Pruebas , Capacidad Vital
20.
Respir Res ; 20(1): 227, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640794

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease for which diagnosis and management remain challenging. Defining the circulating proteome in IPF may identify targets for biomarker development. We sought to quantify the circulating proteome in IPF, determine differential protein expression between subjects with IPF and controls, and examine relationships between protein expression and markers of disease severity. METHODS: This study involved 300 patients with IPF from the IPF-PRO Registry and 100 participants without known lung disease. Plasma collected at enrolment was analysed using aptamer-based proteomics (1305 proteins). Linear regression was used to determine differential protein expression between participants with IPF and controls and associations between protein expression and disease severity measures (percent predicted values for forced vital capacity [FVC] and diffusion capacity of the lung for carbon monoxide [DLco]; composite physiologic index [CPI]). Multivariable models were fit to select proteins that best distinguished IPF from controls. RESULTS: Five hundred fifty one proteins had significantly different levels between IPF and controls, of which 47 showed a |log2(fold-change)| > 0.585 (i.e. > 1.5-fold difference). Among the proteins with the greatest difference in levels in patients with IPF versus controls were the glycoproteins thrombospondin 1 and von Willebrand factor and immune-related proteins C-C motif chemokine ligand 17 and bactericidal permeability-increasing protein. Multivariable classification modelling identified nine proteins that, when considered together, distinguished IPF versus control status with high accuracy (area under receiver operating curve = 0.99). Among participants with IPF, 14 proteins were significantly associated with FVC % predicted, 23 with DLco % predicted, 14 with CPI. Four proteins (roundabout homolog-2, spondin-1, polymeric immunoglobulin receptor, intercellular adhesion molecule 5) demonstrated the expected relationship across all three disease severity measures. When considered in pathways analyses, proteins associated with the presence or severity of IPF were enriched in pathways involved in platelet and haemostatic responses, vascular or platelet derived growth factor signalling, immune activation, and extracellular matrix organisation. CONCLUSIONS: Patients with IPF have a distinct circulating proteome and can be distinguished using a nine-protein profile. Several proteins strongly associate with disease severity. The proteins identified may represent biomarker candidates and implicate pathways for further investigation. TRIAL REGISTRATION: ClinicalTrials.gov (NCT01915511).


Asunto(s)
Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/genética , Proteogenómica/métodos , Sistema de Registros , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Masculino , Persona de Mediana Edad , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA