Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Drugs Ther ; 35(6): 1291-1304, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33687595

RESUMEN

PURPOSE: Perivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and ß3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function. METHODS: Vascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of ß3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT. RESULTS: High fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via ß3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing ß3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored. CONCLUSION: Loss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Obesidad/fisiopatología , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hiperglucemia/inducido químicamente , Hiperinsulinismo/inducido químicamente , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/efectos de los fármacos , Receptores Adrenérgicos beta 3/efectos de los fármacos , Factor de Necrosis Tumoral alfa/efectos de los fármacos
2.
Brain Behav Immun ; 76: 126-138, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30453020

RESUMEN

The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.


Asunto(s)
Isquemia Encefálica/inmunología , Interleucina-1/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Inflamación/metabolismo , Interleucina-1/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA