Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Langmuir ; 39(12): 4216-4223, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926905

RESUMEN

The process of convectively self-assembling particles in films suffers from low reproducibility due to its high dependency on particle concentration, as well as a variety of interactions and physical parameters. Inhomogeneities in flow rates and instabilities at the air-liquid interface are mostly responsible for reproducibility issues. These problems are aggravated by adding multiple components to the dispersion, such as binary solvent mixtures or surfactant/polymer additives, both common approaches to control stick-slip behavior. When an additive is used, not only does it change the surface tension, but also the viscosity and the evaporation rate. Worse yet, gradients in these three properties can form, which then lead to Marangoni currents. Here, we use a series of alcohols to study the role of viscosity independently of other solvent properties, to show its impact on stick-slip behavior and interband distances. We show that mixtures of glycerol and alcohol or poly(acrylic acid) and alcohol lead to more complex patterning. Marangoni currents are not always observed in co-solvent systems, being dependent on the rate of solvent evaporation. To produce homogeneous particle assemblies and control stick-slip behavior, gradients must be avoided, and the surface tension and viscosity need both be carefully controlled.

2.
Nano Lett ; 21(5): 2046-2052, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33599504

RESUMEN

The design and chemical synthesis of plasmonic nanoresonators exhibiting a strong magnetic response in the visible is a key requirement to the realization of efficient functional and self-assembled metamaterials. However, novel applications like Huygens' metasurfaces or mu-near-zero materials require stronger magnetic responses than those currently reported. Our numerical simulations demonstrate that the specific dodecahedral morphology, whereby 12 silver satellites are located on the faces of a nanosized dielectric dodecahedron, provides sufficiently large electric and magnetic dipolar and quadrupolar responses that interfere to produce so-called generalized Huygens' sources, fulfilling the generalized Kerker condition. Using a multistep colloidal engineering approach, we synthesize highly symmetric plasmonic nanoclusters with a controlled silver satellite size and show that they exhibit a strong forward scattering that may be used in various applications such as metasurfaces or perfect absorbers.

3.
Chemistry ; 24(27): 6917-6921, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29534315

RESUMEN

Original titania nanocages are fabricated from sacrificial silica/polystyrene tetrapod-like templates. Here the template synthesis, titania deposition and nanocage development through polystyrene dissolution and subsequent silica etching are described. Discussion about the competitive deposition of titania on the biphasic templates is particularly emphasized. The morphology of the nanocages is investigated by TEM, STEM, EDX mapping and electron tomography.

7.
Langmuir ; 30(5): 1424-34, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24483291

RESUMEN

We report an improved synthesis of colloidal Ag(n) nanoprisms using carboxyl compounds (citrate or succinate) and long chain macromolecules (polyvinylpyrrolidone (PVP)). The side-facet structure of the triangular nanostructure was determined in detail using electron tomography in scanning transmission mode (3D STEM) and HRTEM. It has been found that they are built up by {100} facets with a single parallel twin plane. The best conditions for producing uniform Ag nanoprisms with tunable sizes and high yields in the presence of carboxyl compounds additive system are described, and a growth mechanism is proposed. This approach provides also a route to synthesize Ag nanodisks and Au-Ag alloyed nanoprisms.

8.
Adv Mater ; 36(18): e2311305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270280

RESUMEN

Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.

9.
Chemistry ; 19(42): 14024-9, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24108591

RESUMEN

Oh my Gold! Gold atoms stabilise catalytically active palladium nanoparticles when engaged in an alloy heterogenised on carbon. The increased durability makes the Pd-Au/C catalyst more recyclable than the gold-free Pd/C catalyst for the Sonogashira reaction.

10.
Langmuir ; 29(5): 1551-61, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23286375

RESUMEN

In an attempt to fabricate low index metamaterials by a bottom-up approach, meta-atoms constituted of silica-coated silver nanoparticles are assembled by a Langmuir-Schaefer technique into thin films of large area and well-controlled thickness. The silica shells ensure a constant distance between the silver cores, hence providing a constant coupling of the localized surface plasmon resonance (LSPR) of the nanoparticles in the assembled composite material. The optical response is studied by normal angle spectral reflectance measurements and by variable angle spectroscopic ellipsometry. The normal incidence data are described well in the framework of a single effective Lorentz oscillator model. The resonance of the assembled material is blue-shifted and shows no significant broadening with respect to the absorption band of the individual nanoparticles. The observation of these two effects is enabled by the core-shell structure of the meta-atoms that prevents aggregation of the metallic cores. The ellipsometry study confirms the general behavior and reveals the natural birefringence of the few-layer materials. The amplitude of the observed resonance is weaker than expected from the Maxwell-Garnett mixing rule. This well-characterized system may constitute a good model for numerical simulations.

11.
ACS Nano ; 17(7): 6362-6372, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36976862

RESUMEN

The nanostructures of natural species offer beautiful visual appearances with saturated and iridescent colors, and the question arises whether we can reproduce or even create unique appearances with man-made metasurfaces. However, harnessing the specular and diffuse light scattered by disordered metasurfaces to create attractive and prescribed visual effects is currently inaccessible. Here, we present an interpretive, intuitive, and accurate modal-based tool that unveils the main physical mechanisms and features defining the appearance of colloidal disordered monolayers of resonant meta-atoms deposited on a reflective substrate. The model shows that the combination of plasmonic and Fabry-Perot resonances offers uncommon iridescent visual appearances, differing from those classically observed with natural nanostructures or thin-film interferences. We highlight an unusual visual effect exhibiting only two distinct colors and theoretically investigate its origin. The approach can be useful in the design of visual appearance with easy-to-make and universal building blocks having a large resilience to fabrication imperfections and potential for innovative coatings and fine-art applications.

12.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36770575

RESUMEN

We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.

13.
Langmuir ; 28(24): 9027-33, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22369067

RESUMEN

The spectral characteristics (wavelength and line width) and the optical extinction cross-section of the longitudinal localized surface plasmon resonance (LSPR) of individual gold nanobipyramids have been quantitatively measured using the spatial modulation spectroscopy technique. The morphology of the same individual nanoparticles has been determined by transmission electron microscopy (TEM). The experimental results are thus interpreted with a numerical model using the TEM measured sizes of the particles as an input, and either including the substrate or assuming a mean homogeneous environment. Results are compared to those obtained for individual nanorods and also show the importance of the local environment of the particle on the detailed description of its spectral position and extinction amplitude.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanotubos/química , Resonancia por Plasmón de Superficie , Tamaño de la Partícula , Propiedades de Superficie
14.
Nano Lett ; 11(11): 5013-9, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21985399

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is now a well-established technique for the detection, under appropriate conditions, of single molecules (SM) adsorbed on metallic nanostructures. However, because of the large variations of the SERS enhancement factor on the surface, only molecules located at the positions of highest enhancement, so-called hot-spots, can be detected at the single-molecule level. As a result, in all SM-SERS studies so far only a small fraction, typically less than 1%, of molecules are actually observed. This complicates the analysis of such experiments and means that trace detection via SERS can in principle still be vastly improved. Here we propose a simple scheme, based on selective adsorption of the target analyte at the SERS hot-spots only, that allows in principle detection of every single target molecule in solution. We moreover provide a general experimental methodology, based on the comparison between average and maximum (single molecule) SERS enhancement factors, to verify the efficiency of our approach. The concepts and tools introduced in this work can readily be applied to other SERS systems aiming for detection of every single target molecule.


Asunto(s)
Algoritmos , Mezclas Complejas/análisis , Mezclas Complejas/química , Ensayo de Materiales/métodos , Resonancia por Plasmón de Superficie/métodos
15.
Nanoscale ; 14(9): 3324-3345, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35174843

RESUMEN

Monolayers of assembled nano-objects with a controlled degree of disorder hold interest in many optical applications, including photovoltaics, light emission, sensing, and structural coloration. Controlled disorder can be achieved through either top-down or bottom-up approaches, but the latter is more suited to large-scale, low-cost fabrication. Disordered colloidal monolayers can be assembled through evaporatively driven convective assembly, a bottom-up process with a wide range of parameters impacting particle placement. Motivated by the photonic applications of such monolayers, in this review we discuss the quantification of monolayer disorder, and the assembly methods that have been used to produce them. We review the impact of particle and solvent properties, as well as the use of substrate patterning, to create the desired spatial distributions of particles.

16.
Phys Chem Chem Phys ; 13(25): 11878-84, 2011 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-21623449

RESUMEN

Periodic mesoporous Eu(3+) doped titania materials were obtained through the EISA (Evaporation Induced Self Assembly) process. Eu(3+) ions, entrapped within the semi-crystalline walls of the highly porous framework, appear to be advantageous during the probing of surface photochemical reactions. Its emission intensity is very sensitive to the presence of physisorbed molecules, in gas or liquid phase, that reside within the pores. In particular, strong fluctuations in intensity of the (5)D(0)→(7)F(2) transition were observed under UV light exposure on the time scale of tens of seconds. The emission modulation dynamics show a strong correlation with the crystallinity of the titania matrix. Correlation of the emission with the photocatalytic activity of the semiconductor for photodegradation of an organic molecule is observed. A model is proposed to describe the involved mechanisms.

17.
Mater Horiz ; 8(2): 565-570, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821272

RESUMEN

We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.

18.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497277

RESUMEN

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

19.
Nanoscale Horiz ; 6(4): 311-318, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439184

RESUMEN

Highly symmetrical gold nanocages can be produced with a controllable number of circular windows of either 2, 3, 4, 6 or 12 via an original fabrication route. The synthetic pathway includes three main stages: the synthesis of silica/polystyrene multipod templates, the regioselective seeded growth of a gold shell on the unmasked part of the silica surface and the development of gold nanocages by dissolving/etching the templates. Electron microscopy and tomography provide evidence of the symmetrical features of the as-obtained nanostructures. The optical properties of nanocages with 4 and 12 windows were measured at the single particle level by spatial modulation spectroscopy and correlated with numerical simulations based on finite-element modeling. The new multi-step synthesis approach reported here also allows the synthesis of rattle-like nanostructures through filling of the nanocages with a guest nano-object. With the potential to adjust the chemical composition, size and geometry of both the guest particle and the host cage, it opens new routes towards the fabrication of hollow nanostructures of high interest for a variety of applications including sensing devices, catalytic reactors and biomedicine.

20.
Nanoscale Adv ; 2(9): 3804-3808, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36132760

RESUMEN

By using 1,2-propanediol instead of the classic polyol solvent, ethylene glycol, ultra-long silver nanowires are obtained in only 1 h. These nanowires lead to transparent electrodes with a sheet resistance of 5 Ohms per sq at a transparency of 94%, one of the highest figures of merit for nanowire electrodes ever reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA