Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 23(3): 654-69, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23734492

RESUMEN

Because of its role in many ecological processes, movement of animals in response to landscape features is an important subject in ecology and conservation biology. In this paper, we develop models of animal movement in relation to objects or fields in a landscape. We took a finite mixture modeling approach in which the component densities are conceptually related to different choices for movement in response to a landscape feature, and the mixing proportions are related to the probability of selecting each response as a function of one or more covariates. We combined particle swarm optimization and an expectation-maximization (EM) algorithm to obtain maximum-likelihood estimates of the model parameters. We used this approach to analyze data for movement of three bobcats in relation to urban areas in southern California, USA. A behavioral interpretation of the models revealed similarities and differences in bobcat movement response to urbanization. All three bobcats avoided urbanization by moving either parallel to urban boundaries or toward less urban areas as the proportion of urban land cover in the surrounding area increased. However, one bobcat, a male with a dispersal-like large-scale movement pattern, avoided urbanization at lower densities and responded strictly by moving parallel to the urban edge. The other two bobcats, which were both residents and occupied similar geographic areas, avoided urban areas using a combination of movements parallel to the urban edge and movement toward areas of less urbanization. However, the resident female appeared to exhibit greater repulsion at lower levels of urbanization than the resident male, consistent with empirical observations of bobcats in southern California. Using the parameterized finite mixture models, we mapped behavioral states to geographic space, creating a representation of a behavioral landscape. This approach can provide guidance for conservation planning based on analysis of animal movement data using statistical models, thereby linking connectivity evaluations to empirical data.


Asunto(s)
Conducta Animal/fisiología , Ecosistema , Lynx/fisiología , Modelos Biológicos , Actividad Motora/fisiología , Animales , California , Femenino , Sistemas de Información Geográfica , Masculino , Telemetría
2.
Conserv Biol ; 27(4): 710-20, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23772966

RESUMEN

A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Lagartos/fisiología , Locomoción/fisiología , Roedores/fisiología , Animales , California , Fluorescencia , Especificidad de la Especie , Transportes
3.
Ecol Evol ; 11(12): 7905-7916, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188860

RESUMEN

A central theme for conservation is understanding how animals differentially use, and are affected by change in, the landscapes they inhabit. However, it has been challenging to develop conservation schemes for habitat-specific behaviors.Here we use behavioral change point analysis to identify behavioral states of golden eagles (Aquila chrysaetos) in the Sonoran and Mojave Deserts of the southwestern United States, and we identify, for each behavioral state, conservation-relevant habitat associations.We modeled behavior using 186,859 GPS points from 48 eagles and identified 2,851 distinct segments comprising four behavioral states. Altitude above ground level (AGL) best differentiated behavioral states, with two clusters of short-distance movement behaviors characterized by low AGL (state 1 AGL = 14 m (median); state 2 AGL = 11 m) and two associated with longer-distance movement behaviors and characterized by higher AGL (state 3 AGL = 108 m; state 4 AGL = 450 m).Behaviors such as perching and low-altitude hunting were associated with short-distance movements in updraft-poor environments, at higher elevations, and over steeper and more north-facing terrain. In contrast, medium-distance movements such as hunting and transiting were over gentle and south-facing slopes. Long-distance transiting occurred over the desert habitats that generate the best updraft.This information can guide management of this species, and our approach provides a template for behavior-specific habitat associations for other species of management concern.

4.
Emerg Infect Dis ; 15(12): 2021-4, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19961691

RESUMEN

Plague seroprevalence was estimated in populations of pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague in nondomestic felid hosts to better understand the role of these species in disease persistence and transmission.


Asunto(s)
Lynx/microbiología , Peste/transmisión , Puma/microbiología , Yersinia pestis/aislamiento & purificación , Animales , Anticuerpos Antibacterianos/sangre , Colorado , Reservorios de Enfermedades , Humanos , Estudios Seroepidemiológicos , Yersinia pestis/inmunología
5.
PLoS One ; 13(9): e0200203, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30192760

RESUMEN

In many parts of the world, the combined effects of habitat fragmentation and altered disturbance regimes pose a significant threat to biodiversity. This is particularly true in Mediterranean-type ecosystems (MTEs), which tend to be fire-prone, species rich, and heavily impacted by human land use. Given the spatial complexity of overlapping threats and species' vulnerability along with limited conservation budgets, methods are needed for prioritizing areas for monitoring and management in these regions. We developed a multi-criteria Pareto ranking methodology for prioritizing spatial units for conservation and applied it to fire threat, habitat fragmentation threat, species richness, and genetic biodiversity criteria in San Diego County, California, USA. We summarized the criteria and Pareto ranking results (from west to east) within the maritime, coastal, transitional, inland climate zones within San Diego County. Fire threat increased from the maritime zone eastward to the transitional zone, then decreased in the mountainous inland climate zone. Number of fires and fire return interval departure were strongly negatively correlated. Fragmentation threats, particularly road density and development density, were highest in the maritime climate zone, declined towards the east, and were positively correlated. Species richness criteria showed distributions among climate zones similar to those of the fire threat variables. When using species richness and fire threat criteria, most lower-ranked (higher conservation priority) units occurred in the coastal and transitional zones. When considering genetic biodiversity, lower-ranked units occurred more often in the mountainous inland zone. With Pareto ranking, there is no need to select criteria weights as part of the decision-making process. However, negative correlations and larger numbers of criteria can result in more units assigned to the same rank. Pareto ranking is broadly applicable and can be used as a standalone decision analysis method or in conjunction with other methods.


Asunto(s)
Biodiversidad , Clima , Conservación de los Recursos Naturales/métodos , Ecosistema , Incendios Forestales , California
6.
PLoS One ; 9(7): e101205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24988114

RESUMEN

Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.


Asunto(s)
Animales Salvajes/fisiología , Aves/fisiología , Dugong/fisiología , Ecología/métodos , Movimiento , Telemetría/métodos , Ursidae/fisiología , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema , Femenino , Imagenología Tridimensional/métodos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA