Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 14399, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002472

RESUMEN

Commercial backsheets based on polyvinylidene fluoride (PVDF) can experience premature field failures in the form of outer layer cracking. This work seeks to provide a better understanding of the changes in material properties that lead to crack formation and find appropriate accelerated tests to replicate them. The PVDF-based backsheet outer layer can have a different structure and composition, and is often blended with a poly(methyl methacrylate) (PMMA) polymer. We observed depletion of PMMA upon aging with sequential (MAST) and combined (C-AST) accelerated stress testing. In field-aged samples from Arizona and India, where PVDF crystallizes in its predominant α-phase, the degree of crystallinity greatly increased. MAST and C-AST protocols were, to some extent, able to replicate the increase in crystallinity seen in PVDF after ~ 7 years in the field, but no single-stress test condition (UV, damp heat, thermal cycling) resulted in significant changes in the material properties. The MAST regimen used here was too extreme to produce realistic degradation, but the test was useful in discovering weaknesses of the particular PVDF-based outer layer structure studied. No excessive ß-phase formation was observed after aging with any test condition; however, the presence of ß-phase was identified locally by Fourier transform infrared spectroscopy (FTIR). We conclude that both MAST and C-AST are relevant tests for screening outdoor failure mechanisms in PVDF backsheets, as they were successful in producing material degradation that led to cracking.

2.
ACS Appl Mater Interfaces ; 10(43): 37103-37109, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30346686

RESUMEN

Atomic layer deposited titanium dioxide (ALD-TiO2) has emerged as an effective protection layer for highly efficient semiconductor anodes which are normally unstable under the potential and pH conditions used to oxidize water in a photoelectrochemical cell. The failure modes of silicon anodes coated with an Ir/IrO x oxygen evolution catalyst layer are investigated, and poor catalyst/substrate adhesion is found to be a key factor in failed anodes. Quantitative measurements of interfacial adhesion energy show that the addition of TiO2 significantly improves reliability of anodes, yielding an adhesion energy of 6.02 ± 0.5 J/m2, more than double the adhesion energy measured in the absence of an ALD-TiO2 protection layer. These results indicate the importance of catalyst adhesion to an interposed protection layer in promoting operational stability of high efficiency semiconducting anodes during solar-driven water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA