Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neural Eng ; 20(2)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963106

RESUMEN

Objective. Optogenetic stimulation of the auditory nerve offers the ability to overcome the limitations of cochlear implants through spatially precise stimulation, but cannot achieve the temporal precision nor temporal fidelity required for good hearing outcomes. Auditory midbrain recordings have indicated a combined (hybrid) stimulation approach may permit improvements in the temporal precision without sacrificing spatial precision by facilitating electrical activation thresholds. However, previous research has been conducted in undeafened or acutely deafened animal models, and the impact of chronic deafness remains unclear. Our study aims to compare the temporal precision of auditory nerve responses to optogenetic, electrical, and combined stimulation in acutely and chronically deafened animals.Methods. We directly compare the temporal fidelity (measured as percentage of elicited responses) and precision (i.e. stability of response size and timing) of electrical, optogenetic, and hybrid stimulation (varying sub-threshold or supra-threshold optogenetic power levels combined with electrical stimuli) through compound action potential and single-unit recordings of the auditory nerve in transgenic mice expressing the opsin ChR2-H134R in auditory neurons. Recordings were conducted immediately or 2-3 weeks following aminoglycoside deafening when there was evidence of auditory nerve degeneration.Main results. Results showed that responses to electrical stimulation had significantly greater temporal precision than optogenetic stimulation (p< 0.001 for measures of response size and timing). This temporal precision could be maintained with hybrid stimulation, but only when the optogenetic stimulation power used was below or near activation threshold and worsened with increasing optical power. Chronically deafened mice showed poorer facilitation of electrical activation thresholds with concurrent optogenetic stimulation than acutely deafened mice. Additionally, responses in chronically deafened mice showed poorer temporal fidelity, but improved temporal precision to optogenetic and hybrid stimulation compared to acutely deafened mice.Significance. These findings show that the improvement to temporal fidelity and temporal precision provided by a hybrid stimulation paradigm can also be achieved in chronically deafened animals, albeit at higher levels of concurrent optogenetic stimulation levels.


Asunto(s)
Implantes Cocleares , Sordera , Animales , Ratones , Optogenética , Nervio Coclear , Ratones Transgénicos , Estimulación Eléctrica , Cóclea , Estimulación Acústica , Umbral Auditivo
2.
Front Neurosci ; 17: 1190662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360169

RESUMEN

Introduction: Electrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation. Methods: The sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured. Results: Optically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aß) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aß hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aß fiber and myogenic thresholds (p = 0.008, n = 4). Discussion: The results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aß fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery.

3.
Hear Res ; 426: 108470, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35249777

RESUMEN

The expansion of criteria for cochlear implantation has resulted in increasing numbers of cochlear implant subjects having some level of residual hearing. The present study examined the effects of implantation surgery and long-term electrical stimulation on residual hearing in a partially deafened cat model. Eighteen animals were partially deafened, implanted and chronically stimulated. Implantation resulted in a pronounced loss evident 2-weeks post implantation of up to 30-40 dB at 4 & 8 kHz which was statistically significant (2-way RM ANOVA (Time, Frequency): p(Time) = 0.001; p(Frequency) < 0.001; p(Time x Frequency) < 0.001)). Chronic stimulation resulted in a significant (RM ANOVA: p(Time) = 0.030) ongoing hearing loss, with 5 animals (∼30%) exhibiting an increase in threshold of 20 dB or more. Different loss profiles were evident with peripheral and central hearing assessments suggests that changes in 'central gain' may be occurring. Despite significant loss of hair cells and spiral ganglion neurons and distinct fibrous tissue growth in the scala tympani following implantation and long-term electrical stimulation, there were no significant correlations with any histological measures and ongoing hearing loss. The partially deafened, chronically stimulated cat model provides a clinically relevant model in which to further investigate the cause of the delayed hearing loss following cochlear implant surgery and use.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Pérdida Auditiva , Animales , Cóclea/fisiología , Audición , Sordera/patología , Pérdida Auditiva/patología , Estimulación Eléctrica
4.
J Neural Eng ; 17(5): 056009, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32916669

RESUMEN

OBJECTIVE: Cochleae of long-term cochlear implant users have shown evidence of particulate platinum (Pt) corroded from the surface of Pt electrodes. The pathophysiological effect of Pt within the cochlea has not been extensively investigated. We previously evaluated the effects of Pt corrosion at high charge densities and reported negligible pathophysiological impact. The present study extends this work by examining techniques that may reduce Pt corrosion. APPROACH: Deafened guinea pigs were continuously stimulated for 28 d using biphasic current pulses at extreme charge densities using: (i) electrode shorting; (ii) electrode shorting with capacitive coupling (CC); or (iii) electrode shorting with alternating leading phase (AP). On completion of stimulation, cochleae were examined for corrosion product, tissue response, auditory nerve (AN) survival and trace levels of Pt; and electrodes examined for surface corrosion. MAIN RESULTS: Pt corrosion was evident at ≥200 µC cm-2 phase-1; the amount dependent on charge density (p< 0.01) and charge recovery technique (p < 0.01); reduced corrosion was apparent using CC. Tissue response increased with charge density (p< 0.007); cochleae stimulated at ≥200 µC cm-2 phase-1 exhibited a vigorous response including a focal region of necrosis and macrophages. Notably, tissue response was not dependent on the charge recovery technique (p = 0.56). Despite stimulation at high charge densities resulting in significant levels of Pt corrosion, there was no stimulus induced loss of ANs. SIGNIFICANCE: Significant increases in tissue response and Pt corrosion were observed following stimulation at high charge densities. Charge recovery using CC, and to a lesser extent AP, reduced the amount of Pt corrosion but not the tissue response. Stimulation at change densities an order of magnitude higher than those used when programming cochlear implant recipients in the clinic, produced a vigorous tissue response and corrosion products without evidence of neural loss.


Asunto(s)
Implantes Cocleares , Estimulación Eléctrica , Potenciales Evocados Auditivos del Tronco Encefálico , Platino (Metal) , Animales , Cobayas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA