RESUMEN
OBJECTIVE: Exposure to repetitive head impacts (RHI) is associated with later-life cognitive symptoms and neuropathologies, including chronic traumatic encephalopathy (CTE). Cognitive decline in community cohorts is often due to multiple pathologies; however, the frequency and contributions of these pathologies to cognitive impairment in people exposed to RHI are unknown. Here, we examined the relative contributions of 13 neuropathologies to cognitive symptoms and dementia in RHI-exposed brain donors. METHODS: Neuropathologists examined brain tissue from 571 RHI-exposed donors and assessed for the presence of 13 neuropathologies, including CTE, Alzheimer disease (AD), Lewy body disease (LBD), and transactive response DNA-binding protein 43 (TDP-43) inclusions. Cognitive status was assessed by presence of dementia, Functional Activities Questionnaire, and Cognitive Difficulties Scale. Spearman rho was calculated to assess intercorrelation of pathologies. Additionally, frequencies of pathological co-occurrence were compared to a simulated distribution assuming no intercorrelation. Logistic and linear regressions tested associations between neuropathologies and dementia status and cognitive scale scores. RESULTS: The sample age range was 18-97 years (median = 65.0, interquartile range = 46.0-76.0). Of the donors, 77.2% had at least one moderate-severe neurodegenerative or cerebrovascular pathology. Stage III-IV CTE was the most common neurodegenerative disease (43.1%), followed by TDP-43 pathology, AD, and hippocampal sclerosis. Neuropathologies were intercorrelated, and there were fewer unique combinations than expected if pathologies were independent (p < 0.001). The greatest contributors to dementia were AD, neocortical LBD, hippocampal sclerosis, cerebral amyloid angiopathy, and CTE. INTERPRETATION: In this sample of RHI-exposed brain donors with wide-ranging ages, multiple neuropathologies were common and correlated. Mixed neuropathologies, including CTE, underlie cognitive impairment in contact sport athletes. ANN NEUROL 2024;95:314-324.
Asunto(s)
Enfermedad de Alzheimer , Encefalopatía Traumática Crónica , Esclerosis del Hipocampo , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedades Neurodegenerativas/patología , Encéfalo/patología , Enfermedad de Alzheimer/patología , Enfermedad por Cuerpos de Lewy/patología , Encefalopatía Traumática Crónica/patología , Proteínas de Unión al ADN/metabolismo , CogniciónRESUMEN
Exposure to repetitive head impacts in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE), which currently can be diagnosed only at post-mortem. American football players are at higher risk of developing CTE given their exposure to repetitive head impacts. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at post-mortem in living individuals using structural MRI. MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 54, age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each traumatic encephalopathy syndrome (TES) diagnosis, core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula, temporal pole and superior frontal gyrus. Post hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus, amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe Age × Group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggested that MRI morphometrics detect abnormalities in individuals with a history of repetitive head impact exposure that resemble the anatomic distribution of pathological findings from post-mortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggested that brain morphometry must be complemented by other types of measures to characterize individuals with repetitive head impacts.
Asunto(s)
Encéfalo , Encefalopatía Traumática Crónica , Fútbol Americano , Imagen por Resonancia Magnética , Humanos , Masculino , Persona de Mediana Edad , Fútbol Americano/lesiones , Anciano , Encefalopatía Traumática Crónica/patología , Encefalopatía Traumática Crónica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Estados UnidosRESUMEN
BACKGROUND: Traumatic encephalopathy syndrome (TES) is defined as the clinical manifestation of the neuropathological entity chronic traumatic encephalopathy (CTE). A core feature of TES is neurobehavioral dysregulation (NBD), a neuropsychiatric syndrome in repetitive head impact (RHI)-exposed individuals, characterized by a poor regulation of emotions/behavior. To discover biological correlates for NBD, we investigated the association between biomarkers of inflammation (interleukin (IL)-1ß, IL-6, IL-8, IL-10, C-reactive protein (CRP), tumor necrosis factor (TNF)-α) in cerebrospinal fluid (CSF) and NBD symptoms in former American football players and unexposed individuals. METHODS: Our cohort consisted of former American football players, with (n = 104) or without (n = 76) NBD diagnosis, as well as asymptomatic unexposed individuals (n = 55) from the DIAGNOSE CTE Research Project. Specific measures for NBD were derived (i.e., explosivity, emotional dyscontrol, impulsivity, affective lability, and a total NBD score) from a factor analysis of multiple self-report neuropsychiatric measures. Analyses of covariance tested differences in biomarker concentrations between the three groups. Within former football players, multivariable linear regression models assessed relationships among log-transformed inflammatory biomarkers, proxies for RHI exposure (total years of football, cumulative head impact index), and NBD factor scores, adjusted for relevant confounding variables. Sensitivity analyses tested (1) differences in age subgroups (< 60, ≥ 60 years); (2) whether associations could be identified with plasma inflammatory biomarkers; (3) associations between neurodegeneration and NBD, using plasma neurofilament light (NfL) chain protein; and (4) associations between biomarkers and cognitive performance to explore broader clinical symptoms related to TES. RESULTS: CSF IL-6 was higher in former American football players with NBD diagnosis compared to players without NBD. Furthermore, elevated levels of CSF IL-6 were significantly associated with higher emotional dyscontrol, affective lability, impulsivity, and total NBD scores. In older football players, plasma NfL was associated with higher emotional dyscontrol and impulsivity, but also with worse executive function and processing speed. Proxies for RHI exposure were not significantly associated with biomarker concentrations. CONCLUSION: Specific NBD symptoms in former American football players may result from multiple factors, including neuroinflammation and neurodegeneration. Future studies need to unravel the exact link between NBD and RHI exposure, including the role of other pathophysiological pathways.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Fútbol Americano , Humanos , Anciano , Persona de Mediana Edad , Encefalopatía Traumática Crónica/patología , Interleucina-6 , BiomarcadoresRESUMEN
BACKGROUND: Intersectionality, or the multidimensional influence of social identity and systems of power, may drive increased morbidity and mortality for adults of color with Down syndrome. We documented racial and ethnic differences in death and hospitalizations among Medicaid enrolled adults with Down syndrome and assessed interaction of racial-ethnic group and Down syndrome. METHODS: Our sample consisted of 119,325 adults with Down syndrome and >3.2 million adults without intellectual disability enrolled in Medicare at any point from 2011-2019. We calculated age-adjusted mortality and hospitalization rates by racial-ethnic group among those with Down syndrome. We examined additive interaction between Down syndrome and racial and ethnic group on mortality and hospitalization rates. RESULTS: Among those with Down syndrome, age-adjusted mortality rate did not differ between Black and White racial groups (rate ratio: 0.96, 95%CI: 0.92, 1.01) while mortality rate was lower for Pacific Islander (0.80), Asian (0.71), Native (0.77), and Mixed-race groups (0.50). Hospitalization rates were higher for all marginalized groups compared to the White group. When assessing the interaction between racial-ethnic group and Down syndrome, Black, Native Americans, and Mixed-race groups exhibited a negative additive interaction for mortality rate and all groups except Native Americans exhibited positive additive interaction for hospitalization. CONCLUSIONS: Increased hospitalization rates for adults with Down syndrome from marginalized racial and ethnic groups suggest worse health and healthcare. Similar mortality rates across racial and ethnic groups may result from increased infant mortality rate in marginalized groups with Down syndrome leading to reduced mortality among those surviving to adulthood.
RESUMEN
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Asunto(s)
Enfermedad de Alzheimer , Encefalopatía Traumática Crónica , Enfermedades Neurodegenerativas , Humanos , Estudios Transversales , EncéfaloRESUMEN
Down syndrome (DS) is the most common chromosomal disorder in humans. DS is associated with increased prevalence of several ocular sequelae, including characteristic blue-dot cerulean cataract. DS is accompanied by age-dependent accumulation of Alzheimer's disease (AD) amyloid-ß (Aß) peptides and amyloid pathology in the brain and comorbid early-onset Aß amyloidopathy and colocalizing cataracts in the lens. Quasi-elastic light scattering (QLS) is an established optical technique that noninvasively measures changes in protein size distributions in the human lens in vivo. In this cross-sectional study, lenticular QLS correlation time was decreased in adolescent subjects with DS compared to age-matched control subjects. Clinical QLS was consistent with alterations in relative particle hydrodynamic radius in lenses of adolescents with DS. These correlative results suggest that noninvasive QLS can be used to evaluate molecular changes in the lenses of individuals with DS.
Asunto(s)
Enfermedad de Alzheimer , Catarata/congénito , Síndrome de Down , Cristalino , Humanos , Adolescente , Síndrome de Down/complicaciones , Síndrome de Down/patología , Estudios Transversales , Enfermedad de Alzheimer/metabolismo , Cristalino/metabolismo , Péptidos beta-Amiloides/metabolismoRESUMEN
BACKGROUND: Mild traumatic brain injury (mTBI) is common in children. Long-term cognitive and behavioral outcomes as well as underlying structural brain alterations following pediatric mTBI have yet to be determined. In addition, the effect of age-at-injury on long-term outcomes is largely unknown. METHODS: Children with a history of mTBI (n = 406; Mage = 10 years, SDage = 0.63 years) who participated in the Adolescent Brain Cognitive Development (ABCD) study were matched (1:2 ratio) with typically developing children (TDC; n = 812) and orthopedic injury (OI) controls (n = 812). Task-based executive functioning, parent-rated executive functioning and emotion-regulation, and self-reported impulsivity were assessed cross-sectionally. Regression models were used to examine the effect of mTBI on these domains. The effect of age-at-injury was assessed by comparing children with their first mTBI at either 0-3, 4-7, or 8-10 years to the respective matched TDC controls. Fractional anisotropy (FA) and mean diffusivity (MD), both MRI-based measures of white matter microstructure, were compared between children with mTBI and controls. RESULTS: Children with a history of mTBI displayed higher parent-rated executive dysfunction, higher impulsivity, and poorer self-regulation compared to both control groups. At closer investigation, these differences to TDC were only present in one respective age-at-injury group. No alterations were found in task-based executive functioning or white matter microstructure. CONCLUSIONS: Findings suggest that everyday executive function, impulsivity, and emotion-regulation are affected years after pediatric mTBI. Outcomes were specific to the age at which the injury occurred, suggesting that functioning is differently affected by pediatric mTBI during vulnerable periods. Groups did not differ in white matter microstructure.
Asunto(s)
Conmoción Encefálica , Función Ejecutiva , Sustancia Blanca , Humanos , Función Ejecutiva/fisiología , Niño , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/patología , Adolescente , Conducta Impulsiva/fisiología , Estudios Transversales , Imagen de Difusión Tensora , Regulación Emocional/fisiología , Preescolar , Pruebas NeuropsicológicasRESUMEN
INTRODUCTION: Trauma patients return to the emergency department (ED) at alarmingly high rates, despite not all patients requiring hospital resources. Reasons for ED re-presentation and associated risk factors have not been fully investigated. METHODS: Retrospective cohort study of adult trauma admissions at an urban safety net level 1 trauma center (1/12018-12/312021). Risk factors for ED re-presentation were identified using purposeful selection and modeled using multivariable logistic regression. RESULTS: Of 2491 patients, 19% returned within 30 d (N = 475). Most patients presented for uncontrolled pain (37%, N = 175), medical concerns (25%, N = 119), and infection (10%, N = 49). The readmission rates varied as follows: 18% for uncontrolled pain (N = 32), 42% for medical concerns (N = 50), and 67% for infection (N = 33). Risk factors for uncontrolled pain included depression/anxiety (adjusted odds ratio [aOR] 2.06, 95% confidence interval [CI] 1.39-3.05), substance use disorder (SUD) (aOR 1.65, 95% CI 1.12-2.43), and penetrating mechanism of injury (aOR 2.25, 95% CI 1.59-3.18). Risk factors for medical concerns included number of medical comorbidities (aOR 1.34, 95% CI 1.18-1.52), depression/anxiety (aOR 1.97, 95% CI 1.28-3.01), SUD (aOR 2.48, 95% CI 1.65-3.74), and nonhome discharge disposition (aOR 1.56, 95% CI 1.07-2.28). Risk factors for infection included non-English primary language (aOR 3.41, 95% CI 1.82-6.39), SUD (aOR 2.00, 95% CI 1.03-3.88), and nonhome discharge disposition (aOR 2.06, 95% CI 1.15-3.67). CONCLUSIONS: Uncontrolled pain was the most common reason for re-presentation, although only a small fraction required readmission. Patients with penetrating injury may benefit from improved pain control. Primary care provider follow-up may help mitigate risk of medical disease exacerbation, and wound care instructions for non-English speaking patients may decrease re-presentation for infection.
RESUMEN
OBJECTIVE: Neurobehavioral dysregulation (NBD), a core clinical feature of traumatic encephalopathy syndrome, encompasses neuropsychiatric symptoms reported among individuals with a history of repetitive head impact exposure, including contact sport athletes. The objective of this study was to examine the construct and subconstructs of NBD through a series of factor and cluster analyses. METHODS: Six clinician-scientists selected self-report questionnaire items relevant to NBD from seven available neuropsychiatric scales through a blinded voting process. These items were subjected to confirmatory factor analyses in a sample of 178 former college and professional American football players and 60 asymptomatic individuals without a history of repetitive head impact exposure. All participants were enrolled in the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy Research Project. Factor scores were generated on the basis of the optimal expert-informed model for NBD. Construct validity was assessed with neuropsychiatric scales not included in generation of the factor scores. Cluster analyses with NBD factor scores were used to examine symptom profiles. RESULTS: Factor analyses confirmed that NBD was composed of four subconstructs: explosivity, emotional dyscontrol, impulsivity, and affective lability. Cluster analyses indicated four distinct symptom profiles of NBD in this group of former football players: asymptomatic (N=80, 45%), short fuse (N=33, 19%), high affective lability (N=34, 19%), and high NBD (N=31, 17%). CONCLUSIONS: These findings characterize NBD as a multifaceted clinical construct with a heterogeneous presentation, providing a foundation for empirical work on the diagnostic criteria for traumatic encephalopathy syndrome and research on the neurobiological underpinnings of NBD.
RESUMEN
OBJECTIVES: To estimate the impact of occupational injury and illness on opioid-related mortality while accounting for confounding by preinjury opioid use. METHODS: We employed a retrospective cohort study design using Washington State workers' compensation data for 1994-2000 injuries linked to US Social Security Administration earnings and mortality data and National Death Index (NDI) cause of death data from 1994 to 2018. We categorised injuries as lost-time versus medical-only, where the former involved more than 3 days off work or permanent disability. We determined death status and cause of death from NDI records. We modelled separate Fine and Gray subdistribution hazard ratios (sHRs) and 95% CIs for injured men and women for opioid-related and all drug-related mortality through 2018. We used quantitative bias analysis to account for unmeasured confounding by preinjury opioid use. RESULTS: The hazard of opioid-related mortality was elevated for workers with lost-time relative to medical-only injuries: sHR for men: 1.53, 95% CI 1.41 to 1.66; for women: 1.31, 95% CI 1.16 to 1.48. Accounting for preinjury opioid use, effect sizes were reduced but remained elevated: sHR for men was 1.43, 95% simulation interval (SI) 1.20 to 1.69; for women: 1.27, 95% SI 1.10 to 1.45. CONCLUSIONS: Occupational injuries and illnesses severe enough to require more than 3 days off work are associated with an increase in the hazard of opioid-related mortality. The estimated increase is reduced when we account for preinjury opioid use, but it remains substantial. Reducing work-related injuries and postinjury opioid prescribing and improving employment and income security may decrease opioid-related mortality.
Asunto(s)
Analgésicos Opioides , Traumatismos Ocupacionales , Trastornos Relacionados con Opioides , Indemnización para Trabajadores , Humanos , Washingtón/epidemiología , Masculino , Femenino , Traumatismos Ocupacionales/mortalidad , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Analgésicos Opioides/efectos adversos , Indemnización para Trabajadores/estadística & datos numéricos , Trastornos Relacionados con Opioides/mortalidad , Causas de MuerteRESUMEN
Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physically trained adolescents. Male adolescent athletes (n = 136, 13-16 years) underwent a standardized neurological examination including 28 tests grouped into 6 functional clusters. Non-optimal performance in at least 1 cluster was rated as NSS (NSS+ group). Participants underwent T1- and diffusion-weighted magnetic resonance imaging. Cortical volume, thickness, and local gyrification were calculated using Freesurfer. Measures of white matter microstructure (Free-water (FW), FW-corrected fractional anisotropy (FAt), axial and radial diffusivity (ADt, RDt)) were calculated using tract-based spatial statistics. General linear models with age and handedness as covariates were applied to assess differences between NSS+ and NSS- group. We found higher gyrification in a large cluster spanning the left superior frontal and parietal areas, and widespread lower FAt and higher RDt compared with the NSS- group. This study shows that NSS in adolescents are associated with brain structure alterations. Underlying mechanisms may include alterations in synaptic pruning and axon myelination, which are hallmark processes of brain maturation.
Asunto(s)
Imagen por Resonancia Magnética , Sustancia Blanca , Humanos , Masculino , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo , Sustancia Blanca/patología , Imagen de Difusión por Resonancia Magnética , Examen NeurológicoRESUMEN
BACKGROUND: Former professional collision sport (CS) athletes, particularly American football players, are at risk of developing chronic health conditions; however, little is known about the health outcomes of amateur athletes. METHODS: A 60-item health survey examined self-reported symptoms and diagnoses among former Division 1 Collegiate CS athletes and non- or limited-contact sport (non-CS) athletes. Binary logistic regressions tested the association between playing CS and health outcomes. RESULTS: Five hundred and two (6.2%) participants completed the survey: 160 CS athletes (mean age: 59.2, SD = 16.0) and 303 non-CS athletes (mean age: 54.0, SD = 16.9). CS athletes had increased odds of reported cognitive complaints and neuropsychiatric symptoms including memory (Padj < 0.01), attention/concentration (Padj = 0.01), problem solving/multi-tasking (Padj = 0.05), language (Padj = 0.02), anxiety (Padj = 0.04), impulsivity (Padj = 0.02), short-fuse/rage/explosivity (Padj < 0.001), and violence/aggression (Padj = 0.02). CS athletes also reported higher rates of sleep apnea (Padj = 0.02). There were no group differences in cardiovascular and physical health outcomes. CONCLUSIONS: Former CS athletes reported more cognitive and neuropsychiatric complaints. The low response rate is a limitation of this study; however, over 500,000 athletes play college sports each year, thus research on long-term health outcomes in this population is critical.
RESUMEN
INTRODUCTION: Blood-based biomarkers offer a promising approach for the detection of neuropathologies from repetitive head impacts (RHI). We evaluated plasma biomarkers of amyloid, tau, neurodegeneration, and inflammation in former football players. METHODS: The sample included 180 former football players and 60 asymptomatic, unexposed male participants (aged 45-74). Plasma assays were conducted for beta-amyloid (Aß) 40, Aß42, hyper-phosphorylated tau (p-tau) 181+231, total tau (t-tau), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), Aß42/p-tau181 and Aß42/Aß40 ratios. We evaluated their ability to differentiate the groups and associations with RHI proxies and traumatic encephalopathy syndrome (TES). RESULTS: P-tau181 and p-tau231(padj = 0.016) were higher and Aß42/p-tau181 was lower(padj = 0.004) in football players compared to controls. Discrimination accuracy for p-tau was modest (area under the curve [AUC] = 0.742). Effects were not attributable to AD-related pathology. Younger age of first exposure (AFE) correlated with higher NfL (padj = 0.03) and GFAP (padj = 0.033). Plasma GFAP was higher in TES-chronic traumatic encephalopathy (TES-CTE) Possible/Probable (padj = 0.008). DISCUSSION: Plasma p-tau181 and p-tau231, GFAP, and NfL may offer some usefulness for the characterization of RHI-related neuropathologies. HIGHLIGHTS: Former football players had higher plasma p-tau181 and p-tau231 and lower Aß42/ptau-181 compared to asymptomatic, unexposed men. Younger age of first exposure was associated with increased plasma NfL and GFAP in older but not younger participants. Plasma GFAP was higher in participants with TES-CTE possible/probable compared to TES-CTE no/suggestive.
RESUMEN
INTRODUCTION: Tau is a key pathology in chronic traumatic encephalopathy (CTE). Here, we report our findings in tau positron emission tomography (PET) measurements from the DIAGNOSE CTE Research Project. METHOD: We compare flortaucipir PET measures from 104 former professional players (PRO), 58 former college football players (COL), and 56 same-age men without exposure to repetitive head impacts (RHI) or traumatic brain injury (unexposed [UE]); characterize their associations with RHI exposure; and compare players who did or did not meet diagnostic criteria for traumatic encephalopathy syndrome (TES). RESULTS: Significantly elevated flortaucipir uptake was observed in former football players (PRO+COL) in prespecified regions (p < 0.05). Association between regional flortaucipir uptake and estimated cumulative head impact exposure was only observed in the superior frontal region in former players over 60 years old. Flortaucipir PET was not able to differentiate TES groups. DISCUSSION: Additional studies are needed to further understand tau pathology in CTE and other individuals with a history of RHI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Carbolinas , Encefalopatía Traumática Crónica , Fútbol Americano , Masculino , Humanos , Persona de Mediana Edad , Encefalopatía Traumática Crónica/diagnóstico por imagen , Encefalopatía Traumática Crónica/patología , Fútbol Americano/lesiones , Proteínas tau , Tomografía de Emisión de Positrones , Lesiones Traumáticas del Encéfalo/complicacionesRESUMEN
Background T1-weighted MRI and quantitative longitudinal relaxation rate (R1) mapping have been used to evaluate gadolinium retention in the brain after gadolinium-based contrast agent (GBCA) administration. Whether MRI measures accurately reflect gadolinium regional distribution and concentration in the brain remains unclear. Purpose To compare gadolinium retention in rat forebrain measured with in vivo quantitative MRI R1 and ex vivo laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) mapping after gadobenate, gadopentetate, gadodiamide, or gadobutrol administration. Materials and Methods Adult female Sprague-Dawley rats were randomly assigned to one of five groups (eight per group) and administered gadobenate, gadopentetate, gadodiamide, gadobutrol (2.4 mmol/kg per week for 5 weeks), or saline (4.8 mL/kg per week for 5 weeks). MRI R1 mapping was performed at baseline and 1 week after the final injection to determine R1 and ΔR1. Postmortem brains from the same rats were analyzed with LA-ICP-MS elemental mapping to determine regional gadolinium concentrations. Student t tests were performed to compare results between GBCA and saline groups. Results Rats that were administered gadobenate showed gadolinium-related MRI ΔR1 in 39.5% of brain volume (ΔR1 = 0.087 second-1 ± 0.051); gadopentetate, 20.6% (ΔR1 = 0.069 second-1 ± 0.018); gadodiamide, 5.4% (ΔR1 = 0.055 second-1 ± 0.019); and gadobutrol, 2.2% (ΔR1 = 0.052 second-1 ± 0.041). Agent-specific gadolinium-related ΔR1 was detected in multiple forebrain regions (neocortex, hippocampus, dentate gyrus, thalamus, and caudate-putamen) in rats treated with gadobenate or gadopentetate, whereas rats treated with gadodiamide showed gadolinium-related ΔR1 in caudate-putamen. By contrast, LA-ICP-MS elemental mapping showed a similar regional distribution pattern of heterogeneous retained gadolinium in the forebrain of rats treated with gadobenate, gadopentetate, or gadodiamide, with the average gadolinium concentration of 0.45 µg · g-1 ± 0.07, 0.50 µg · g-1 ± 0.10, and 0.60 µg · g-1 ± 0.11, respectively. Low levels (0.01 µg · g-1 ± 0.00) of retained gadolinium were detected in the forebrain of gadobutrol-treated rats. Conclusion Differences in in vivo MRI longitudinal relaxation rate versus ex vivo elemental mass spectrometry measures of retained gadolinium in rat forebrains suggest that some forms of retained gadolinium may escape detection with MRI. © RSNA, 2022 Online supplemental material is available for this article.
Asunto(s)
Gadolinio , Compuestos Organometálicos , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Gadolinio DTPA , Medios de Contraste , Meglumina , Imagen por Resonancia Magnética/métodos , Encéfalo , Espectrometría de MasasRESUMEN
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Asunto(s)
Encefalopatía Traumática Crónica , Fútbol Americano , Tauopatías , Animales , Bovinos , Humanos , Masculino , Australia , Encéfalo/patología , Canadá , Encefalopatía Traumática Crónica/patología , Proteínas tau/metabolismoRESUMEN
Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.
Asunto(s)
Encefalopatía Traumática Crónica , Esclerosis del Hipocampo , Enfermedades Neurodegenerativas , Proteinopatías TDP-43 , Humanos , Anciano , Encefalopatía Traumática Crónica/patología , Envejecimiento , Proteinopatías TDP-43/patología , Proteínas de Unión al ADN/metabolismoRESUMEN
Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Proteínas tau , Autopsia , BiomarcadoresRESUMEN
PURPOSE: Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS: Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS: Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS: Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Fútbol Americano , Humanos , Enfermedad de Alzheimer/metabolismo , Autopsia , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Encefalopatía Traumática Crónica/diagnóstico por imagen , Encefalopatía Traumática Crónica/etiología , Encefalopatía Traumática Crónica/metabolismo , Muerte , Tomografía de Emisión de Positrones , Proteínas tau/metabolismoRESUMEN
Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau181) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau181 as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau181 between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau181 was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau181 concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau181 levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau181 and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau181 levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau181 concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau181 as a scalable biomarker for the detection of Alzheimer's disease.