Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Exp Bot ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630600

RESUMEN

Kales (Brassica oleracea convar acephala) are fast-growing, nutritious leafy vegetables ideal for year-round indoor farming. However, selection of best cultivars for growth under artificial lighting necessitates a deeper understanding of leaf metabolism in different kale types. Here we examined a curly leaved cultivar Half Tall and a lacinato type cultivar Black Magic under moderate growth light (130 µmol photons m-1s-1/22°C) and high light (800 µmol photons m-1s-1/26°C) conditions. These conditions induced genotype-dependent differences in nutritionally important metabolites, especially anthocyanins and glucosinolates (GSLs), in the kale cultivars. In the pale green Half Tall, growth under high light conditions did not induce changes in either pigmentation or total GSL content. In contrast, the purple pigmentation of Black Magic intensified due to increased anthocyanin accumulation. Black Magic showed reduced amounts of indole GSLs and increased amounts of aliphatic GSLs under high light conditions, with notable cultivar-specific adjustments in individual GSL species. Correlation analysis of metabolite profiles suggested cultivar-specific metabolic interplay between serine biosynthesis and the production of indole GSLs. RNA sequencing identified candidate genes encoding metabolic enzymes and regulatory components behind anthocyanin and GSL biosynthesis. These findings improve the understanding of leaf metabolism and its effects on the nutritional quality of kale cultivars.

2.
Plant Physiol ; 190(1): 698-713, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35736511

RESUMEN

Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Fosforilación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Serina-Treonina Quinasas , Serina/metabolismo , Treonina/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(30): 17499-17509, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32690715

RESUMEN

Coping of evergreen conifers in boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterized photoprotection mechanism, a sustained form of nonphotochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data were collected during 4 consecutive years (2016 to 2019) from trees growing in sun and shade habitats. When day temperatures dropped below -4 °C, the specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) could be detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged coincidence of bright winter days and temperatures close to -10 °C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation as prerequisites for sustained NPQ. Data obtained collectively suggest three components related to sustained NPQ in spruce: 1) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate destacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes; 2) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which 3) in concert with PSII photoinhibition, is suggested to trigger sustained NPQ in spruce.


Asunto(s)
Fotosíntesis , Picea/fisiología , Estaciones del Año , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Ambiente , Complejos de Proteína Captadores de Luz/metabolismo , Noruega , Fosforilación , Espectrometría de Masas en Tándem , Proteínas de las Membranas de los Tilacoides/química , Árboles
4.
Plant Physiol ; 186(4): 1859-1877, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618107

RESUMEN

Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.


Asunto(s)
Aconitato Hidratasa/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Aconitato Hidratasa/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo
5.
Plant J ; 101(5): 1198-1220, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31648387

RESUMEN

Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Proteostasis/genética , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Transporte de Proteínas , Plantones/genética , Plantones/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360890

RESUMEN

The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Proteoma , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Electroforesis en Gel Bidimensional/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Espectrometría de Masas/métodos , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Filogenia , Procesamiento Proteico-Postraduccional , Proteómica/métodos
7.
Plant Physiol ; 181(4): 1615-1631, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31615849

RESUMEN

Thylakoid membranes in land plant chloroplasts are organized into appressed and nonappressed membranes, which contribute to the control of energy distribution between the two photosystems (PSI and PSII) from the associated light-harvesting complexes (LHCs). Under fluctuating light conditions, fast reversible phosphorylation of the N-terminal thylakoid protein domains and changes in electrostatic forces induce modifications in thylakoid organization. To gain insight into the role and dynamics of thylakoid protein phosphorylation, we used targeted proteomics to quantify amounts of the structural proteins CURVATURE THYLAKOID1 (CURT1), including the levels of CURT1B N terminus phosphorylation and acetylation, after short-term fluctuating light treatments of Arabidopsis (Arabidopsis thaliana). The CURT1B protein was localized to a specific curvature domain separated from the margin domain, and specifically depleted of chlorophyll-binding protein complexes. The acetylation and phosphorylation of the CURT1B N terminus were mutually exclusive. The level of CURT1B phosphorylation, but not of acetylation, increased upon light shifts that also led to an increase in PSII core protein phosphorylation. These dynamics were largely absent in the knockout mutant of PSII core protein kinase SER/THR PROTEIN KINASE8 (STN8). Moreover, in mutants impaired in interaction between phosphorylated LHCII and PSI, the phosphorylation dynamics of CURT1B and the amount of the other CURT1 proteins were misregulated, indicating a functional interaction between CURT1B and PSI-LHCII complexes in grana margins. The complex relationships between phosphorylation of PSII, LHCII, and CURT1B support the dynamics of thylakoid protein complexes that are crucial in the optimization of photosynthesis under fluctuating light intensities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Tilacoides/metabolismo , Acetilación , Alanina/metabolismo , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Proteínas de Unión al ADN/química , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Biológicos , Fosforilación , Fosfotreonina/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/metabolismo
8.
Plant Physiol ; 180(3): 1582-1597, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31061101

RESUMEN

In all eukaryotes, protein phosphorylation is a key regulatory mechanism in several cellular processes, including the acclimation of photosynthesis to environmental cues. Despite being a well-conserved regulatory mechanism in the chloroplasts of land plants, distinct differences in thylakoid protein phosphorylation patterns have emerged from studies on species of different phylogenetic groups. Here, we analyzed thylakoid protein phosphorylation in the moss Physcomitrella patens, assessing the thylakoid phospho-protein profile and dynamics in response to changes in white light intensity. Compared with Arabidopsis (Arabidopsis thaliana), parallel characterization of wild-type P patens and the knockout mutant stn8 (depleted in SER/THR PROTEIN KINASE8 [STN8]) disclosed a moss-specific pattern of thylakoid protein phosphorylation, both with respect to specific targets and to their dynamic phosphorylation in response to environmental cues. Unlike vascular plants, (1) phosphorylation of the PSII protein D1 in P patens was negligible under all light conditions, (2) phosphorylation of the PSII core subunits CP43 and D2 showed only minor changes upon fluctuations in light intensity, and (3) absence of STN8 completely abolished all PSII core protein phosphorylation. Further, we detected light-induced phosphorylation in the minor light harvesting complex (LHC) antenna protein LHCB6, which was dependent on STN8 kinase activity, and found specific phosphorylations on LHCB3. Data presented here provide further insights into the appearance and physiological role of thylakoid protein phosphorylation during evolution of oxygenic photosynthetic organisms and their colonization of land.


Asunto(s)
Bryopsida/metabolismo , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Cloroplastos/genética , Cloroplastos/ultraestructura , Cinética , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Microscopía Electrónica de Transmisión , Mutación , Fosforilación , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Tilacoides/genética , Tilacoides/ultraestructura
9.
J Exp Bot ; 71(22): 7210-7223, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32930769

RESUMEN

Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The photosystem II (PSII)-associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating light. We investigated how PSB33 knock-out Arabidopsis plants perform under different light qualities. psb33 plants displayed a reduction of 88% of total fresh weight compared to wild type plants when cultivated at the boundary of UV-A and blue light. The sensitivity towards UV-A light was associated with a lower abundance of PSII proteins, which reduces psb33 plants' capacity for photosynthesis. The UV-A phenotype was found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UV-A light-mediated mechanism to maintain a functional PSII pool in the chloroplast.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
10.
J Exp Bot ; 70(12): 3211-3225, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30938447

RESUMEN

Pinaceae are the predominant photosynthetic species in boreal forests, but so far no detailed description of the protein components of the photosynthetic apparatus of these gymnosperms has been available. In this study we report a detailed characterization of the thylakoid photosynthetic machinery of Norway spruce (Picea abies (L.) Karst). We first customized a spruce thylakoid protein database from translated transcript sequences combined with existing protein sequences derived from gene models, which enabled reliable tandem mass spectrometry identification of P. abies thylakoid proteins from two-dimensional large pore blue-native/SDS-PAGE. This allowed a direct comparison of the two-dimensional protein map of thylakoid protein complexes from P. abies with the model angiosperm Arabidopsis thaliana. Although the subunit composition of P. abies core PSI and PSII complexes is largely similar to that of Arabidopsis, there was a high abundance of a smaller PSI subcomplex, closely resembling the assembly intermediate PSI* complex. In addition, the evolutionary distribution of light-harvesting complex (LHC) family members of Pinaceae was compared in silico with other land plants, revealing that P. abies and other Pinaceae (also Gnetaceae and Welwitschiaceae) have lost LHCB4, but retained LHCB8 (formerly called LHCB4.3). The findings reported here show the composition of the photosynthetic apparatus of P. abies and other Pinaceae members to be unique among land plants.


Asunto(s)
Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Picea/genética , Secuencia de Aminoácidos , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Filogenia , Picea/metabolismo , Alineación de Secuencia , Tilacoides/metabolismo
11.
Plant J ; 89(1): 112-127, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27598402

RESUMEN

Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Hojas de la Planta/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metionina/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Biológicos , Hojas de la Planta/genética , Unión Proteica , Proteína Fosfatasa 2/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteómica/métodos , Homología de Secuencia de Aminoácido
12.
Physiol Plant ; 162(2): 162-176, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28815615

RESUMEN

Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Biológicos , Proteínas de Plantas/genética , Plantas/genética , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo
13.
Plant J ; 87(5): 484-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27214592

RESUMEN

STN7 kinase catalyzes the phosphorylation of the globally most common membrane proteins, the light-harvesting complex II (LHCII) in plant chloroplasts. STN7 itself possesses one serine (Ser) and two threonine (Thr) phosphosites. We show that phosphorylation of the Thr residues protects STN7 against degradation in darkness, low light and red light, whereas increasing light intensity and far red illumination decrease phosphorylation and induce STN7 degradation. Ser phosphorylation, in turn, occurs under red and low intensity white light, coinciding with the client protein (LHCII) phosphorylation. Through analysis of the counteracting LHCII phosphatase mutant tap38/pph1, we show that Ser phosphorylation and activation of the STN7 kinase for subsequent LHCII phosphorylation are heavily affected by pre-illumination conditions. Transitions between the three activity states of the STN7 kinase (deactivated in darkness and far red light, activated in low and red light, inhibited in high light) are shown to modulate the phosphorylation of the STN7 Ser and Thr residues independently of each other. Such dynamic regulation of STN7 kinase phosphorylation is crucial for plant growth and environmental acclimation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Treonina/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
14.
J Exp Bot ; 68(15): 4281-4293, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28922769

RESUMEN

On Earth, solar irradiance varies as the sun rises and sets over the horizon, and sunlight is thus in constant fluctuation, following a slow dark-low-high-low-dark curve. Optimal plant growth and development are dependent on the capacity of plants to acclimate and regulate photosynthesis in response to these changes of light. Little is known of regulative processes for photosynthesis during nocturnal events. The nucleus-encoded plant lineage-specific protein PSB33 has been described as stabilizing the photosystem II complex, especially under light stress conditions, and plants lacking PSB33 have a dysfunctional state transition. To clarify the localization and function of this protein, we used phenomic, biochemical and proteomics approaches in the model plant Arabidopsis. We report that PSB33 is predominantly located in non-appressed thylakoid regions and dynamically associates with a thylakoid protein complex in a light-dependent manner. Moreover, plants lacking PSB33 show an accelerated D1 protein degradation in nocturnal periods, and show severely stunted growth when challenged with fluctuating light. We further show that the function of PSB33 precedes the STN7 kinase to regulate or balance the excitation energy of photosystems I and II in fluctuating light conditions.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complejo de Proteína del Fotosistema II/genética
15.
Plant J ; 84(2): 360-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332430

RESUMEN

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Tilacoides/metabolismo , Aclimatación/efectos de la radiación , Arabidopsis/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/efectos de la radiación
16.
New Phytol ; 205(3): 1250-1263, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25307043

RESUMEN

Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific regulatory B'γ subunit of protein phosphatase 2A (PP2A) is required to control organellar ROS signalling and associated metabolic adjustments in Arabidopsis thaliana. Here, we addressed the mechanisms through which PP2A-B'γ impacts on organellar metabolic crosstalk and ROS homeostasis in leaves. Genetic, biochemical and pharmacological approaches, together with a combination of data-dependent acquisition (DDA) and selected reaction monitoring (SRM) MS techniques, were utilized to assess PP2A-B'γ-dependent adjustments in Arabidopsis thaliana. We show that PP2A-B'γ physically interacts with the cytoplasmic form of aconitase, a central metabolic enzyme functionally connected with mitochondrial respiration, oxidative stress responses and regulation of cell death in plants. Furthermore, PP2A-B'γ impacts ROS homeostasis by controlling the abundance of specific alternative oxidase isoforms, AOX1A and AOX1D, in leaf mitochondria. We conclude that PP2A-B'γ-dependent regulatory actions modulate the functional status of metabolic enzymes that essentially contribute to intracellular ROS signalling and metabolic homeostasis in plants.


Asunto(s)
Aconitato Hidratasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citoplasma/enzimología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Proteínas Mitocondriales/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas/antagonistas & inhibidores , Péptidos/química , Fosforilación/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos
17.
Plant Cell Environ ; 38(12): 2641-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26012558

RESUMEN

Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross-talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a-b'γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B'γ (PP2A-B'γ). In the present paper, we explored the impacts of PP2A-B'γ and a highly similar regulatory subunit PP2A-B'ζ in growth regulation and light stress tolerance in Arabidopsis. PP2A-B'γ and PP2A-B'ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a-b'γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo-oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A-B'γ and PP2A-B'ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.


Asunto(s)
Arabidopsis/enzimología , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína , Aclimatación , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Genes Reporteros , Homeostasis , Luz , Mutación , Estrés Oxidativo , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteína Fosfatasa 2/genética , Especies Reactivas de Oxígeno/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Estrés Fisiológico
18.
New Phytol ; 202(1): 145-160, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24299221

RESUMEN

Oxidative stress responses are influenced by growth day length, but little is known about how this occurs. A combined reverse genetics, metabolomics and proteomics approach was used to address this question in Arabidopsis thaliana. A catalase-deficient mutant (cat2), in which intracellular oxidative stress drives pathogenesis-related responses in a day length-dependent manner, was crossed with a knockdown mutant for a specific type 2A protein phosphatase subunit (pp2a-b'γ). In long days (LD), the pp2a-b'γ mutation reinforced cat2-triggered pathogenesis responses. In short days (SD), conditions in which pathogenesis-related responses were not activated in cat2, the additional presence of the pp2a-b'γ mutation allowed lesion formation, PATHOGENESIS-RELATED GENE1 (PR1) induction, salicylic acid (SA) and phytoalexin accumulation and the establishment of metabolite profiles that were otherwise observed in cat2 only in LD. Lesion formation in cat2 pp2a-b'γ in SD was genetically dependent on SA synthesis, and was associated with decreased PHYTOCHROME A transcripts. Phosphoproteomic analyses revealed that several potential protein targets accumulated in the double mutant, including recognized players in pathogenesis and key enzymes of primary metabolism. We conclude that the cat2 and pp2a-b'γ mutations interact synergistically, and that PP2A-B'γ is an important player in controlling day length-dependent responses to intracellular oxidative stress, possibly through phytochrome-linked pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Espacio Intracelular/metabolismo , Estrés Oxidativo , Fotoperiodo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Electroforesis en Gel Bidimensional , Flores/genética , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Genotipo , Indoles/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Hojas de la Planta/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteoma/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ácido Salicílico/metabolismo , Tiazoles/metabolismo
19.
Plant Physiol ; 156(3): 1464-80, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571669

RESUMEN

Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Luz , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Southern Blotting , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células del Mesófilo/citología , Células del Mesófilo/efectos de la radiación , Células del Mesófilo/ultraestructura , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Proteína Fosfatasa 2/genética , Subunidades de Proteína/genética , Proteómica , Especies Reactivas de Oxígeno/metabolismo
20.
PLoS One ; 15(7): e0227466, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32678822

RESUMEN

Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Evolución Molecular , Adenosilhomocisteinasa/clasificación , Adenosilhomocisteinasa/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Electroforesis en Gel Bidimensional , Focalización Isoeléctrica , Luz , Filogenia , Hojas de la Planta/enzimología , Procesamiento Proteico-Postraduccional/efectos de la radiación , ARN Mensajero/metabolismo , Alineación de Secuencia , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA