Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Appl Toxicol ; 44(1): 4-16, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37312419

RESUMEN

This paper provides a comprehensive summary of the main toxicological studies conducted on selenium nanoparticles (NPs) using laboratory animals, up until February 28, 2023. A literature search revealed 17 articles describing experimental studies conducted on warm-blooded animals. Despite some uncertainties, in vivo studies have demonstrated that selenium NPs have an adverse effect on laboratory animals, as evidenced by several indicators of general toxic action. These effects include reductions of body mass, changes in hepatotoxicity indices (increased enzyme activity and accumulation of selenium in the liver), and the possibility of impairment of fatty acid, protein, lipid, and carbohydrate metabolisms. However, no specific toxic action attributable solely to selenium has been identified. The LOAEL and NOAEL values are contradictory. The NOAEL was 0.22 mg/kg body weight per day for males and 0.33 mg/kg body weight per day for females, while the LOAEL was assumed to be a dose of 0.05 mg/kg of nanoselenium. This LOAEL value is much higher for rats than for humans. The relationship between the adverse effects of selenium NPs and exposure dose is controversial and presents a wide typological diversity. Further research is needed to clarify the absorption, metabolism, and long-term toxicity of selenium NPs, which is critical to improving the risk assessment of these compounds.


Asunto(s)
Nanopartículas , Selenio , Humanos , Masculino , Femenino , Ratas , Animales , Selenio/toxicidad , Nivel sin Efectos Adversos Observados , Nanopartículas/toxicidad , Peso Corporal
2.
Arch Toxicol ; 97(5): 1299-1318, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933023

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.


Asunto(s)
Metales Pesados , Fosfatidilinositol 3-Quinasas , Humanos , Transducción de Señal , Hipoxia , Metales Pesados/toxicidad , Factor 1 Inducible por Hipoxia/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/farmacología
3.
Environ Res ; 194: 110675, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33373610

RESUMEN

The objective of this short paper is to call upon the scientific community to channel its attention to the duty and heedfulness of social justice issues. While recognized for decades the impact of social injustice on public health and its disproportionate effects on poorer communities, little has been done to systematically address it. Here, we provide several examples pertinent to the health outcomes associated with social injustice and call upon the scientific community to attend to the issue and antagonize those who attempt to subvert science and its role in ensuring social justice in health.


Asunto(s)
Salud Ambiental , Justicia Social , Salud Pública
4.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363510

RESUMEN

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Asunto(s)
Salud Pública/legislación & jurisprudencia , Medición de Riesgo/legislación & jurisprudencia , Unión Europea , Sustancias Peligrosas/toxicidad , Política de Salud/legislación & jurisprudencia , Humanos
5.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925013

RESUMEN

Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.


Asunto(s)
Intoxicación por Manganeso/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Humanos , Manganeso/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Transmisión Sináptica/efectos de los fármacos
6.
Molecules ; 25(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217959

RESUMEN

Curcumin's pharmacological properties and its possible benefits for neurological diseases and dementia have been much debated. In vitro experiments show that curcumin modulates several key physiological pathways of importance for neurology. However, in vivo studies have not always matched expectations. Thus, improved formulations of curcumin are emerging as powerful tools in overcoming the bioavailability and stability limitations of curcumin. New studies in animal models and recent double-blinded, placebo-controlled clinical trials using some of these new formulations are finally beginning to show that curcumin could be used for the treatment of cognitive decline. Ultimately, this work could ease the burden caused by a group of diseases that are becoming a global emergency because of the unprecedented growth in the number of people aged 65 and over worldwide. In this review, we discuss curcumin's main mechanisms of action and also data from in vivo experiments on the effects of curcumin on cognitive decline.


Asunto(s)
Curcumina/uso terapéutico , Composición de Medicamentos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Cognición/efectos de los fármacos , Curcumina/farmacología , Modelos Animales de Enfermedad , Humanos , Enfermedades del Sistema Nervioso/sangre
7.
Compr Rev Food Sci Food Saf ; 18(4): 1111-1134, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31920467

RESUMEN

Monosodium glutamate (MSG) is an umami substance widely used as flavor enhancer. Although it is generally recognized as being safe by food safety regulatory agencies, several studies have questioned its long-term safety. The purpose of this review was to survey the available literature on preclinical studies and clinical trials regarding the alleged adverse effects of MSG. Here, we aim to provide a comprehensive overview of the reported possible risks that may potentially arise following chronic exposure. Furthermore, we intend to critically evaluate the relevance of this data for dietary human intake. Preclinical studies have associated MSG administration with cardiotoxicity, hepatotoxicity, neurotoxicity, low-grade inflammation, metabolic disarray and premalignant alterations, along with behavioral changes. Moreover, links between MSG consumption and tumorigenesis, increased oxidative stress and apoptosis in thymocytes, as well as genotoxic effects in lymphocytes have been reported. However, in reviewing the available literature, we detected several methodological flaws, which led us to conclude that these studies have limited relevance for extrapolation to dietary human intakes of MSG risk exposure. Clinical trials have focused mainly on the effects of MSG on food intake and energy expenditure. Besides its well-known impact on food palatability, MSG enhances salivary secretion and interferes with carbohydrate metabolism, while the impact on satiety and post-meal recovery of hunger varied in relation to meal composition. Reports on MSG hypersensitivity, also known as 'Chinese restaurant syndrome', or links of its use to increased pain sensitivity and atopic dermatitis were found to have little supporting evidence. Based on the available literature, we conclude that further clinical and epidemiological studies are needed, with an appropriate design, accounting for both added and naturally occurring dietary MSG. Critical analysis of existing literature, establishes that many of the reported negative health effects of MSG have little relevance for chronic human exposure and are poorly informative as they are based on excessive dosing that does not meet with levels normally consumed in food products.

8.
Toxicol Appl Pharmacol ; 353: 1-14, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29885332

RESUMEN

Cardiovascular diseases are among the most significant causes of mortality in humans. Pesticides toxicity and risk for human health are controlled at a European level through a well-developed regulatory network, but cardiotoxicity is not described as a separate hazard class. Specific classification criteria should be developed within the frame of Regulation (EC) No 1272/2008 in order to classify chemicals as cardiotoxic, if applicable to avoid long-term cardiovascular complications. The aim of this study was to review the cardiac pathology and function impairment due to exposure to pesticides (i.e. organophosphates, organothiophisphates, organochlorines, carbamates, pyrethroids, dipyridyl herbicides, triazoles, triazines) based on both animal and human data. The majority of human data on cardiotoxicity of pesticides come from poisoning cases and epidemiological data. Several cardiovascular complications have been reported in animal models including electrocardiogram abnormalities, myocardial infarction, impaired systolic and diastolic performance, functional remodeling and histopathological findings, such as haemorrhage, vacuolisation, signs of apoptosis and degeneration.


Asunto(s)
Cardiotoxicidad/epidemiología , Cardiotoxinas/toxicidad , Cardiopatías/inducido químicamente , Cardiopatías/epidemiología , Plaguicidas/toxicidad , Animales , Cardiotoxicidad/prevención & control , Cardiotoxicidad/terapia , Cardiotoxinas/envenenamiento , Cardiopatías/prevención & control , Cardiopatías/terapia , Humanos , Plaguicidas/efectos adversos , Plaguicidas/envenenamiento
9.
J BUON ; 23(5): 1216-1234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30512251

RESUMEN

Colon holds a complex microbial community, which is crucial for maintaining homeostasis and regulating metabolic functions, supporting the intestinal barrier and controlling immune responses. Previous studies have supported a link between intestinal microbiota and colorectal cancer (CRC). Based on these fndings, the present review analyzed the numerous interactions that occur between microbiota and CRC, starting from the role of intestinal microbiota in colonic homoeostasis. Intestinal microbiota is a cause of CRC and involves various mechanisms such as chronic inflammation, the production of genotoxins causing DNA impairment and/or the biosynthesis of toxic compounds. Moreover, basic metabolic factors such as short-chain fatty acids (SCFAs) and bile acids are included in CRC pathogenesis. Different pathogenic pathways have been reported among different CRC regions (proximal or distal). Variations in the microbial populations are reported between the CRC from these colonic sites, possibly reflecting the bacterial dysbiosis and bioflm distribution. Bowel preparation is essential prior to colonoscopy and surgery; there is, however, minor consensus on the effects of this procedure on intestinal microbiota, notably with regard to the long-term outcomes. With regard to the therapeutic strategy in CRC, the intestinal microbiota is further involved in the modulation of the host response to chemotherapeutic agents (5-fluorouracil and irinotecan) by the interference with drug efcacy and by adverse effects and associated toxicity. In addition, the newly emerged research on CRC immunotherapy reveals an important interplay between intestinal microbiota and the immune system, which includes the possibility of targeting microbiota for the enhancement of anticancer treatment. Additional studies will further clarify the interaction between microbiota and CRC, resulting in the development of alternative therapeutic strategies by manipulating microbiota composition.


Asunto(s)
Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Probióticos/uso terapéutico , Animales , Tracto Gastrointestinal/microbiología , Humanos
10.
Environ Res ; 152: 141-149, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27771568

RESUMEN

Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH)2 without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare the toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd2+ ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd2+ ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd2+ from sources such as cigarette smoke.


Asunto(s)
Compuestos de Cadmio/toxicidad , Citratos/farmacología , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Óxidos/toxicidad , Tensoactivos/farmacología , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Compuestos de Cadmio/química , Hidrolasas de Éster Carboxílico/metabolismo , Restauración y Remediación Ambiental , Activación Enzimática/efectos de los fármacos , Hígado/efectos de los fármacos , Nanopartículas del Metal/química , Metalotioneína/metabolismo , Óxidos/química , Citrato de Sodio , Contaminantes Químicos del Agua/química
11.
Environ Res ; 155: 261-267, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28242563

RESUMEN

Neurotoxic chemicals including several pesticides have been suggested to play a role in the etiology of amyotrophic lateral sclerosis (ALS). We investigated the relation between organochlorine pesticides and their metabolites (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in the etiology of sporadic ALS, determining for the first time their levels in cerebrospinal fluid as indicator of antecedent exposure. We recruited 38 ALS patients and 38 controls referred to an Italian clinical center for ALS care, who underwent a lumbar puncture for diagnostic purposes between 1994-2013, and had 1mL of cerebrospinal fluid available for the determination of OCPs, PCBs and PAHs. Many chemicals were undetectable in both case and control CSF samples, and we found little evidence of any increased disease risk according to higher levels of exposure. Among males >60 years, we found a slight but statistically very unstable increased ALS risk with higher levels of the congener PCB 28 and the OCP metabolite p,p'-DDE. Overall, these results do not suggest an involvement of the neurotoxic chemicals investigated in this study in disease etiology, although small numbers limited the precision of our results.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Contaminantes Ambientales/líquido cefalorraquídeo , Hidrocarburos Clorados/líquido cefalorraquídeo , Plaguicidas/líquido cefalorraquídeo , Hidrocarburos Policíclicos Aromáticos/líquido cefalorraquídeo , Estudios de Casos y Controles , Monitoreo del Ambiente , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Oportunidad Relativa
12.
Adv Exp Med Biol ; 960: 81-110, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28585196

RESUMEN

The present review aims to delve into persistent organic pollutants (POPs) , as xenobiotics, in correlation to human health. POPs exhibit a group of common characteristics, including lipophilicity, persistence to decomposition and bioaccumulation in tissues. POPs have been thoroughly studied by former researchers, as they offer a particular interest in the elucidation of metabolic, endocrine and immune perturbation caused by their synergy with intracellular mechanisms. Herein particular focus is attributed to the relationship of POPs with obesity provocation. Obesity nowadays receives epidemic dimensions, as its prevalence elevates in an exponential degree. POPs-induced obesity rotates around interfering in metabolic and endocrinal procedures and interacting with peroxisome-proliferator and retinoic receptors. Moreover, polymorphisms in CYP gene families exert a negative result, as they incapacitate detoxification of POPs. Obesity could be deemed as a multidimensional condition, as various factors interact to lead to an obesogenic result. Therefore, concomitant disorders may occur, from mild to lethal, and get intensified due to POPs exposure. POPs exact function mechanisms remain rather enigmatic, thus further investigation should be prospectively performed, for a more lucid picture of this issue, and, consequently for the establishment of alternative solutions.


Asunto(s)
Contaminantes Ambientales/efectos adversos , Obesidad/epidemiología , Obesidad/etiología , Xenobióticos/efectos adversos , Humanos
13.
Molecules ; 21(9)2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27589706

RESUMEN

Measuring the antioxidant capacity of foods is essential, as a means of quality control to ensure that the final product reaching the consumer will be of high standards. Despite the already existing assays with which the antioxidant activity is estimated, new, faster and low cost methods are always sought. Therefore, we have developed a novel colorimeter and combined it with a slightly modified DPPH assay, thus creating a kit that can assess the antioxidant capacity of liquids (e.g., different types of coffee, beer, wine, juices) in a quite fast and low cost manner. The accuracy of the colorimeter was ensured by comparing it to a fully validated Hitachi U-1900 spectrophotometer, and a coefficient was calculated to eliminate the observed differences. In addition, a new, user friendly software was developed, in order to render the procedure as easy as possible, while allowing a central monitoring of the obtained results. Overall, a novel kit was developed, with which the antioxidant activity of liquids can be measured, firstly to ensure their quality and secondly to assess the amount of antioxidants consumed with the respective food.


Asunto(s)
Antioxidantes/análisis , Bebidas/análisis , Juego de Reactivos para Diagnóstico , Colorimetría/métodos , Humanos
14.
Chemosphere ; 349: 140712, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036224

RESUMEN

Consumers are constantly exposed to a variety of chemical mixtures as part of their everyday activities and lifestyle. Food, water and commercial products are only some examples of the possible ways people get exposed to these mixtures. However, following federal and local guidelines for risk assessment related to chemical exposure, risk analysis focuses on a single substance exposure scenario and not on a mixture, as in real life. Realizing the pronounced gap of this methodology, the real-life risk simulation scenario approach tries to address this problem by investigating the possible effect of long-term exposure to chemical mixtures closely resembling the actual circumstances of modern life. As part of this effort, this study aimed to identify the cumulative effects of pesticides belonging to different classes and commonly used commercial products on long-term exposure with realistic doses. Sprague Dawley rats were given a pesticide mix of active ingredients and formulation chemicals in a daily acceptable dose (ADI) and 10xADI for 90 days. Following thorough everyday documentation of possible side-effects, after 90 days all animals were sacrificed and their organs were examined. Exposure to pesticides particularly affects the miRNA levels at that point will provide us with more information about whether they can be potential biomarkers.


Asunto(s)
MicroARNs , Plaguicidas , Humanos , Ratas , Animales , Plaguicidas/toxicidad , Nivel sin Efectos Adversos Observados , Ratas Sprague-Dawley , Páncreas , Mesenterio
15.
Oncol Rep ; 52(4)2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39155859

RESUMEN

It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto­occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal­temporal­parietal­occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutación , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Pronóstico , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo
16.
Nutrients ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125404

RESUMEN

INTRODUCTION: Telomeres are nucleoprotein complexes at the ends of chromosomes that are under the control of genetic and environmental triggers. Accelerated telomere shortening is causally implicated in the increasing incidence of diseases. The Mediterranean diet has recently been identified as one that confers protection against diseases. This review aimed to identify the effect of each component of the Mediterranean diet on telomere length dynamics, highlighting the underlying molecular mechanisms. METHODS: PubMed was searched to identify relevant studies to extract data for conducting a narrative review. RESULTS: The Mediterranean diet alleviates clinical manifestations in many diseases. Focusing on autoimmune diseases, the Mediterranean diet can be protective by preventing inflammation, mitochondrial malfunction, and abnormal telomerase activity. Also, each Mediterranean diet constituent seems to attenuate aging through the sustenance or elongation of telomere length, providing insights into the underlying molecular mechanisms. Polyphenols, vitamins, minerals, and fatty acids seem to be essential in telomere homeostasis, since they inhibit inflammatory responses, DNA damage, oxidative stress, mitochondrial malfunction, and cell death and induce telomerase activation. CONCLUSIONS: The Mediterranean diet is beneficial for maintaining telomere dynamics and alleviating age-related illnesses. This review provides a comprehensive overview of cross-sectional, observational, and randomized controlled trials regarding the beneficial impact of every constituent in the Mediterranean diet on telomere length and chronic disease management.


Asunto(s)
Dieta Mediterránea , Telómero , Humanos , Homeostasis del Telómero , Acortamiento del Telómero , Envejecimiento , Telomerasa/metabolismo , Manejo de la Enfermedad , Estrés Oxidativo , Polifenoles , Enfermedades Autoinmunes
17.
J Trace Elem Med Biol ; 79: 127241, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393771

RESUMEN

BACKGROUND: Biomedical application is based on the use of LIBS-derived data on chemical contents of tissues in diagnosis of diseases, forensic investigation, as well as a mechanism for providing online feedback for laser surgery. Although LIBS has certain advantages, the issue of correlation of LIBS-derived data on chemical element content in different human and animal tissues with other methods, and especially ICP-MS, remains pertinent. The objective of the present review was to discuss the application of laser-induced breakdown spectroscopy (LIBS) for elemental analysis of human biosamples or tissues from experimental models of human diseases. METHODS: A systematic search in the PubMed-Medline, Scopus, and Google Scholar databases using the terms laser-induced breakdown spectroscopy, LIBS, metals, trace elements, minerals, and names of particular chemical elements was performed up through 25 February, 2023. Of all extracted studies only those dealing with human subjects, human tissues, in vivo animal and in vitro cell line models of human diseases were reviewed in detail. RESULTS: The majority of studies revealed a wide number of metals and metalloids in solid tissues including teeth (As, Ag, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Ni, P, Pb, Sn, Sr, Ti, and Zn), bones (Al, Ba, Ca, Cd, Cr, K, Mg, Na, Pb, Sr), and nails (Al, As, Ca, Fe, K, Mg, Na, P, Pb, Si, Sr, Ti, Zn). At the same time, LIBS was also used for estimation of trace element and mineral content in hair (Ca, Cu, Fe, K, Mg, Na, Zn), blood (Al, Ca, Co, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Si, Sn, Zn), cancer tissues (Ca, Cu, Fe, Mg, K, Na, Zn) and other tissues. Single studies revealed satisfactory correspondence between quantitative LIBS and ICP-OES/MS data on the level of As (81-93 %), Pb (94-98 %), Cd (50-94 %) in teeth, Cu (97-105 %), Fe (117 %), Zn (88-117 %) in hair, Ca (97-99 %), Zn (90-95 %), and Pb (61-82 %) in kidney stones. LIBS also estimated specific patterns of trace element and mineral content associated with multiple pathologies, including caries, cancer, skin disorders, and other systemic diseases including diabetes mellitus type 2, osteoporosis, hypothyroidism, etc. Data obtained from in situ tissue LIBS analysis were profitably used for discrimination between tissue types. CONCLUSIONS: Taken together, the existing data demonstrate the applicability of LIBS for medical studies, although further increase in its sensitivity, calibration range, cross-validation, and quality control is required.


Asunto(s)
Oligoelementos , Animales , Humanos , Oligoelementos/análisis , Cadmio , Plomo , Minerales/análisis , Análisis Espectral
18.
Toxics ; 11(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37755801

RESUMEN

Chronic diseases of the urogenital tract, such as bladder cancer, prostate cancer, reproductive disorders, and nephropathies, can develop under the effects of chemical hazards in the working environment. In this respect, nanosized particles generated as by-products in many industrial processes seem to be particularly dangerous to organs such as the testes and the kidneys. Nephrotoxicity of element oxide particles has been studied in animal experiments with repeated intraperitoneal injections of Al2O3, TiO2, SiO2, PbO, CdO, CuO, and SeO nanoparticles (NPs) in total doses ranging from 4.5 to 45 mg/kg body weight of rats. NPs were synthesized by laser ablation. After cessation of exposure, we measured kidney weight and analyzed selected biochemical parameters in blood and urine, characterizing the state of the excretory system. We also examined histological sections of kidneys and estimated proportions of different cells in imprint smears of this organ. All element oxide NPs under investigation demonstrated a nephrotoxic effect following subchronic exposure. Following the exposure to SeO and SiO2 NPs, we observed a decrease in serum creatinine and urea, respectively. Exposure to Al2O3 NPs caused an increase in urinary creatinine and urea, while changes in total protein were controversial, as it increased under the effect of Al2O3 NPs and was reduced after exposure to CuO NPs. Histomorphological changes in kidneys are associated with desquamation of the epithelium (following the exposure to all NPs except those of Al2O3 and SiO2) and loss of the brush border (following the exposure to all NPs, except those of Al2O3, TiO2, and SiO2). The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. Compared to the controls, we observed statistically significant alterations in 42.1% (8 of 19) of parameters following the exposure to PbO, CuO, and SeO NPs in 21.1% (4 of 19)-following that, to CdO and Al2O3 NPs-and in 15.8% (3 of 19) and 10.5% (2 of 19) of indicators, following the exposure to TiO2 and SiO2 nanoparticles, respectively. Histomorphological changes in kidneys are associated with desquamation of epithelium and loss of the brush border. The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. The severity of cyto- and histological structural changes in kidneys depends on the chemical nature of NPs. These alterations are not always consistent with biochemical ones, thus impeding early clinical diagnosis of renal damage. Unambiguous ranking of the NPs examined by the degree of their nephrotoxicity is difficult. Additional studies are necessary to establish key indicators of the nephrotoxic effect, which can facilitate early diagnosis of occupational and nonoccupational nephropathies.

19.
Toxics ; 11(2)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36851045

RESUMEN

The potential health-promoting effects of probiotics against intoxication by pesticides is a topic of increasing commercial interest with limited scientific evidence. In this study, we aimed to investigate the positive effects of probiotic Saccharomyces boulardii on the male reproductive system under low dose neonicotinoid pesticide exposure conditions. We observed that acetamiprid and imidacloprid caused a degeneration and necrosis of the spermatocytes in the tubular wall, a severe edema of the intertubular region and a hyperemia. This was concomittant to increased levels of 8-hydroxy-2'-deoxyguanosine reflecting oxidative stress, and an increase in caspase 3 expression, reflecting apoptosis. According to our results, Saccharomyces boulardii supplementation mitigates these toxic effects. Further in vivo and clinical studies are needed to clarify the molecular mechanisms of protection. Altogether, our study reinforces the burden of evidence from emerging studies linking the composition of the gut microbiome to the function of the reproductive system.

20.
Front Sports Act Living ; 5: 1327792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260814

RESUMEN

In modern athlete assessment, the integration of conventional biochemical and ergophysiologic monitoring with innovative methods like telomere analysis, genotyping/phenotypic profiling, and metabolomics has the potential to offer a comprehensive understanding of athletes' performance and potential longevity. Telomeres provide insights into cellular functioning, aging, and adaptation and elucidate the effects of training on cellular health. Genotype/phenotype analysis explores genetic variations associated with athletic performance, injury predisposition, and recovery needs, enabling personalization of training plans and interventions. Metabolomics especially focusing on low-molecular weight metabolites, reveal metabolic pathways and responses to exercise. Biochemical tests assess key biomarkers related to energy metabolism, inflammation, and recovery. Essential elements depict the micronutrient status of the individual, which is critical for optimal performance. Echocardiography provides detailed monitoring of cardiac structure and function, while burnout testing evaluates psychological stress, fatigue, and readiness for optimal performance. By integrating this scientific testing battery, a multidimensional understanding of athlete health status can be achieved, leading to personalized interventions in training, nutrition, supplementation, injury prevention, and mental wellness support. This scientifically rigorous approach hereby presented holds significant potential for improving athletic performance and longevity through evidence-based, individualized interventions, contributing to advances in the field of sports performance optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA