Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
EMBO J ; 43(1): 1-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177311

RESUMEN

The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Canales de Translocación SEC/química , Proteína SecA/metabolismo , Proteínas Bacterianas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Transporte de Proteínas , Nucleótidos/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Mol Cell ; 74(3): 584-597.e9, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30905508

RESUMEN

V(D)J recombination is essential to generate antigen receptor diversity but is also a potent cause of genome instability. Many chromosome alterations that result from aberrant V(D)J recombination involve breaks at single recombination signal sequences (RSSs). A long-standing question, however, is how such breaks occur. Here, we show that the genomic DNA that is excised during recombination, the excised signal circle (ESC), forms a complex with the recombinase proteins to efficiently catalyze breaks at single RSSs both in vitro and in vivo. Following cutting, the RSS is released while the ESC-recombinase complex remains intact to potentially trigger breaks at further RSSs. Consistent with this, chromosome breaks at RSSs increase markedly in the presence of the ESC. Notably, these breaks co-localize with those found in acute lymphoblastic leukemia patients and occur at key cancer driver genes. We have named this reaction "cut-and-run" and suggest that it could be a significant cause of lymphocyte genome instability.


Asunto(s)
Inestabilidad Genómica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocación Genética/genética , Recombinación V(D)J/genética , Animales , Secuencia de Bases/genética , Células COS , Chlorocebus aethiops , Cromosomas/genética , ADN/genética , Roturas del ADN de Doble Cadena , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Ratones , Células 3T3 NIH , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Recombinasas/genética
3.
Proc Natl Acad Sci U S A ; 119(48): e2215541119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409882

RESUMEN

Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.


Asunto(s)
Hormonas Juveniles , Metopreno , Animales , Femenino , Hormonas Juveniles/metabolismo , Ligandos , Metopreno/metabolismo , Insectos/metabolismo , Reproducción , Larva , Péptidos/farmacología
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34615715

RESUMEN

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.


Asunto(s)
Genoma Viral/genética , Pliegue del ARN/genética , ARN Viral/genética , Rotavirus/crecimiento & desarrollo , Empaquetamiento del Genoma Viral/genética , Proteínas no Estructurales Virales/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Rotavirus/genética , Rotavirus/metabolismo
5.
J Biol Chem ; 298(10): 102383, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987382

RESUMEN

The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika viruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demonstrate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncompetitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding residues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.


Asunto(s)
Adenosina Trifosfatasas , ADN de Cadena Simple , Virus de la Encefalitis Transmitidos por Garrapatas , ARN Helicasas , Proteínas no Estructurales Virales , Humanos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/enzimología , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Fosfatos/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/metabolismo , Proteínas no Estructurales Virales/metabolismo
6.
Nucleic Acids Res ; 46(15): 7924-7937, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29796667

RESUMEN

To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.


Asunto(s)
Chaperonas Moleculares/metabolismo , Orthoreovirus Aviar/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Bases , Genoma Viral/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Conformación de Ácido Nucleico , Orthoreovirus Aviar/genética , Unión Proteica , Estructura Secundaria de Proteína , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
7.
Proc Natl Acad Sci U S A ; 114(46): 12255-12260, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087310

RESUMEN

Satellite tobacco necrosis virus (STNV) is one of the smallest viruses known. Its genome encodes only its coat protein (CP) subunit, relying on the polymerase of its helper virus TNV for replication. The genome has been shown to contain a cryptic set of dispersed assembly signals in the form of stem-loops that each present a minimal CP-binding motif AXXA in the loops. The genomic fragment encompassing nucleotides 1-127 is predicted to contain five such packaging signals (PSs). We have used mutagenesis to determine the critical assembly features in this region. These include the CP-binding motif, the relative placement of PS stem-loops, their number, and their folding propensity. CP binding has an electrostatic contribution, but assembly nucleation is dominated by the recognition of the folded PSs in the RNA fragment. Mutation to remove all AXXA motifs in PSs throughout the genome yields an RNA that is unable to assemble efficiently. In contrast, when a synthetic 127-nt fragment encompassing improved PSs is swapped onto the RNA otherwise lacking CP recognition motifs, assembly is partially restored, although the virus-like particles created are incomplete, implying that PSs outside this region are required for correct assembly. Swapping this improved region into the wild-type STNV1 sequence results in a better assembly substrate than the viral RNA, producing complete capsids and outcompeting the wild-type genome in head-to-head competition. These data confirm details of the PS-mediated assembly mechanism for STNV and identify an efficient approach for production of stable virus-like particles encapsidating nonnative RNAs or other cargoes.


Asunto(s)
Proteínas de la Cápside/química , Ingeniería Genética , Genoma Viral , ARN Viral/química , Virus Satélite de la Necrosis del Tabaco/genética , Ensamble de Virus , Secuencias de Aminoácidos , Sitios de Unión , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Expresión Génica , Tamaño del Genoma , Secuencias Invertidas Repetidas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , ARN Viral/genética , ARN Viral/metabolismo , Virus Satélite de la Necrosis del Tabaco/metabolismo , Virus Satélite de la Necrosis del Tabaco/ultraestructura , Replicación Viral
8.
Proc Natl Acad Sci U S A ; 114(18): 4673-4678, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416674

RESUMEN

Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, ß2-microglobulin (ß2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL-1 In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.


Asunto(s)
Anticuerpos Monoclonales/química , Factor Estimulante de Colonias de Granulocitos/química , Hidrodinámica , Agregado de Proteínas , Albúmina Sérica Bovina/química , Microglobulina beta-2/química , Animales , Bovinos , Humanos , Cinética , Estabilidad Proteica
9.
Biophys J ; 116(7): 1194-1203, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30885379

RESUMEN

Hydrogen/deuterium exchange monitored by mass spectrometry is a promising technique for rapidly fingerprinting structural and dynamical properties of proteins. The time-dependent change in the mass of any fragment of the polypeptide chain depends uniquely on the rate of exchange of its amide hydrogens, but determining the latter from the former is generally not possible. Here, we show that, if time-resolved measurements are available for a number of overlapping peptides that cover the whole sequence, rate constants for each amide hydrogen exchange (or equivalently, their protection factors) may be extracted and the uniqueness of the solutions obtained depending on the degree of peptide overlap. However, in most cases, the solution is not unique, and multiple alternatives must be considered. We provide a statistical method that clusters the solutions to further reduce their number. Such analysis always provides meaningful constraints on protection factors and can be used in situations in which obtaining more refined experimental data is impractical. It also provides a systematic way to improve data collection strategies to obtain unambiguous information at single-residue level (e.g., for assessing protein structure predictions at atomistic level).


Asunto(s)
Deuterio/química , Espectrometría de Masas/métodos , Péptidos/química , Amidas/química , Complemento C3/química , Enlace de Hidrógeno , Espectrometría de Masas/normas
10.
Emerg Infect Dis ; 24(3): 584-587, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29460760

RESUMEN

In 2015, Clostridium difficile testing rates among 30 US community, multispecialty, and cancer hospitals were 14.0, 16.3, and 33.9/1,000 patient-days, respectively. Pooled hospital onset rates were 0.56, 0.84, and 1.57/1,000 patient-days, respectively. Higher testing rates may artificially inflate reported rates of C. difficile infection. C. difficile surveillance should consider testing frequency.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Disparidades en el Estado de Salud , Técnicas Bacteriológicas , Clostridioides difficile/genética , Infecciones por Clostridium/diagnóstico , Hospitalización , Hospitales , Humanos , Técnicas de Amplificación de Ácido Nucleico , Vigilancia en Salud Pública
11.
Proc Natl Acad Sci U S A ; 112(18): 5691-6, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25902516

RESUMEN

Amyloid disorders cause debilitating illnesses through the formation of toxic protein aggregates. The mechanisms of amyloid toxicity and the nature of species responsible for mediating cellular dysfunction remain unclear. Here, using ß2-microglobulin (ß2m) as a model system, we show that the disruption of membranes by amyloid fibrils is caused by the molecular shedding of membrane-active oligomers in a process that is dependent on pH. Using thioflavin T (ThT) fluorescence, NMR, EM and fluorescence correlation spectroscopy (FCS), we show that fibril disassembly at pH 6.4 results in the formation of nonnative spherical oligomers that disrupt synthetic membranes. By contrast, fibril dissociation at pH 7.4 results in the formation of nontoxic, native monomers. Chemical cross-linking or interaction with hsp70 increases the kinetic stability of fibrils and decreases their capacity to cause membrane disruption and cellular dysfunction. The results demonstrate how pH can modulate the deleterious effects of preformed amyloid aggregates and suggest why endocytic trafficking through acidic compartments may be a key factor in amyloid disease.


Asunto(s)
Amiloide/química , Amiloidosis/metabolismo , Benzotiazoles , Endosomas/química , Proteínas HSP70 de Choque Térmico/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Lisosomas/química , Monocitos/metabolismo , Muramidasa/química , Unión Proteica , Proteínas Recombinantes/química , Espectrometría de Fluorescencia , Tiazoles/química , Microglobulina beta-2/química
12.
Proc Natl Acad Sci U S A ; 112(7): 2227-32, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646435

RESUMEN

We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogens.


Asunto(s)
Virus ARN/genética , ARN Viral/genética , Proteínas de la Cápside/metabolismo , Virus ARN/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Electricidad Estática
13.
Biochim Biophys Acta Bioenerg ; 1858(9): 763-770, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28634030

RESUMEN

The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from Escherichia coli, cytochrome bo3, for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055-16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P-side of single HCOs. Proton transport activity of cytochrome bo3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH6.4-8.4, while proton release at the P-side had an optimum pH of ~7.4, suggesting that the pH optimum is related to proton release from the proton exit site. Our previous single-enzyme experiments identified rare, long-lived conformation states of cytochrome bo3 where protons leak back under turn-over conditions. Here, we analyzed and found that ~23% of cytochrome bo3 proteoliposomes show ΔpH half-lives below 50s after stopping turnover, while only ~5% of the proteoliposomes containing a non-pumping mutant, E286C cytochrome bo3 exhibit such fast decays. These single-enzyme results confirm our model in which HCO exhibit heterogeneous pumping rates and can adopt rare leak states in which protons are able to rapidly flow back.


Asunto(s)
Citocromos/metabolismo , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Proteolípidos/metabolismo , Bombas de Protones/metabolismo , Transporte Biológico , Grupo Citocromo b , Citocromos/genética , Técnicas Electroquímicas/instrumentación , Transporte de Electrón , Escherichia coli/enzimología , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Colorantes Fluorescentes , Liposomas/metabolismo , Microscopía Fluorescente , Oxidación-Reducción , Proteolípidos/ultraestructura , Bombas de Protones/genética , Protones
14.
Nucleic Acids Res ; 43(14): 7044-57, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26109354

RESUMEN

Reoviruses are important human, animal and plant pathogens having 10-12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA-protein and RNA-RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA-RNA interactions between genomic precursors during segment assortment and packaging.


Asunto(s)
Orthoreovirus Aviar/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Embrión de Pollo , Genoma Viral , Conformación de Ácido Nucleico , Multimerización de Proteína , ARN/química , Proteínas de Unión al ARN/química , Proteínas Virales/química
15.
Biophys J ; 111(10): 2077-2085, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851933

RESUMEN

Long RNA molecules are at the core of gene regulation across all kingdoms of life, while also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with nonrepeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers. To test whether a branched polymer model can estimate the overall sizes of large RNAs, we employed fluorescence correlation spectroscopy to examine the hydrodynamic radii of a broad spectrum of biologically important RNAs, ranging from viral genomes to long noncoding regulatory RNAs. The relative sizes of long RNAs measured at low ionic strength correspond well to those predicted by two theoretical approaches that treat the effective branching associated with secondary structure formation-one employing the Kramers theorem for calculating radii of gyration, and the other featuring the metric of maximum ladder distance. Upon addition of multivalent cations, most RNAs are found to be compacted as compared with their original, low ionic-strength sizes. These results suggest that sizes of long RNA molecules are determined by the branching pattern of their secondary structures. We also experimentally validate the proposed computational approaches for estimating hydrodynamic radii of single-stranded RNAs, which use generic RNA structure prediction tools and thus can be universally applied to a wide range of long RNAs.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Secuencia de Bases , Hidrodinámica , Modelos Moleculares , ARN/genética
16.
Nucleic Acids Res ; 42(8): 5177-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24553251

RESUMEN

Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa Sigma 54/química , Transcripción Genética , Dominio Catalítico , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Colorantes Fluorescentes , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa Sigma 54/metabolismo , Moldes Genéticos
17.
J Am Chem Soc ; 137(51): 16055-63, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26618221

RESUMEN

Heme-copper oxidases (HCOs) are key enzymes in prokaryotes and eukaryotes for energy production during aerobic respiration. They catalyze the reduction of the terminal electron acceptor, oxygen, and utilize the Gibbs free energy to transport protons across a membrane to generate a proton (ΔpH) and electrochemical gradient termed proton motive force (PMF), which provides the driving force for the adenosine triphosphate (ATP) synthesis. Excessive PMF is known to limit the turnover of HCOs, but the molecular mechanism of this regulatory feedback remains relatively unexplored. Here we present a single-enzyme study that reveals that cytochrome bo3 from Escherichia coli, an HCO closely homologous to Complex IV in human mitochondria, can enter a rare, long-lifetime leak state during which proton flow is reversed. The probability of entering the leak state is increased at higher ΔpH. By rapidly dissipating the PMF, we propose that this leak state may enable cytochrome bo3, and possibly other HCOs, to maintain a suitable ΔpH under extreme redox conditions.

18.
Biochem J ; 458(1): 153-8, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24438328

RESUMEN

TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.


Asunto(s)
Cromatina/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Sitios de Unión , Ratones , Células 3T3 NIH , Unión Proteica
19.
Nucleic Acids Res ; 41(20): 9396-410, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939620

RESUMEN

Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.


Asunto(s)
Cystoviridae/enzimología , ARN Helicasas/química , Proteínas Virales/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/clasificación , Secuencia de Aminoácidos , Sitios de Unión , Endodesoxirribonucleasas/química , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/química , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/química , ARN Helicasas/clasificación , Rec A Recombinasas/clasificación , Proteínas Virales/clasificación
20.
Proc Natl Acad Sci U S A ; 109(39): 15769-74, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019360

RESUMEN

Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.


Asunto(s)
Genoma Viral/fisiología , Levivirus/fisiología , ARN Viral/metabolismo , Ensamble de Virus/fisiología , Levivirus/química , Levivirus/ultraestructura , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA