Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 303(4): 935-948, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30773832

RESUMEN

Bone histology grants substantial insight into the growth and biology of fossil vertebrates. Many of the major non-avian dinosaurian clades have been extensively sampled for bone histologic data allowing reconstruction of their growth as well as the assessment of the evolution of growth changes along phylogenies. However, horned ceratopsians are poorly represented in paleohistologic studies. Further, the ceratopsian taxa that have been examined are unevenly sampled phylogenetically with very basal forms and highly derived forms making up the majority of studied taxa. In order to rectify this, we have histologically sampled Avaceratops from Montana and Yehuecauhceratops from northern Mexico to assess how mid-sized basal centrosaurines grew relative to more basal and derived forms. Based on results from these taxa, basal centrosaurines present a mosaic of growth characters intermediate between those seen in basal ceratopsians and more derived centrosaurines. Further, Yehuecauhceratops has many lines of arrested growth preserved, suggesting that the large number of lines of arrested growth found in a high-latitude Pachyrhinosaurus specimen may be a result of phylogeny rather than geography. Since lines of arrested growth are not preserved in long bones of many ceratopsians, especially chasmosaurines, we also histologically sampled ribs of Avaceratops and Pachyrhinosaurus. However, the largest ribs were highly remodeled obscuring lines of arrested growth, making it unlikely that rib histology will clarify growth trends in ceratopsians. These centrosaurines add to the growing ceratopsian histological database and demonstrate that basal centrosaurines grew in a manner intermediate between non-ceratopsid taxa and derived centrosaurines. Anat Rec, 303:935-948, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Evolución Biológica , Dinosaurios/anatomía & histología , Fósiles , Filogenia , Costillas/anatomía & histología , Animales , Técnicas Histológicas , México
2.
Anat Rec (Hoboken) ; 299(5): 601-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26864238

RESUMEN

Psittacosaurus is one of the most abundant dinosaurs known, which allows for extensive study of its growth and form. Previous studies have evaluated growth trajectories of Psittacosaurus using bone histology. However, we present the first study of Psittacosaurus comparative juvenile histology and describe the histology of Psittacosaurus within its first year of life based on multiple sections taken from an exquisite monospecific assemblage of juveniles from the Yixian Formation in Liaoning, China. Specimens studied had femur lengths ranging from 30 to 36 mm. The five juveniles examined all have similar histologic patterns in the midshaft and epiphyseal regions showing that there is limited plasticity in bone development in juvenile Psittacosaurus and that all of the specimens in the assemblage were likely the same age. The microstructure patterns are compatible with the hypothesis that Psittacosaurus was precocial and that these juveniles were neonates. Based on comparisons with other juvenile ornithischians, juvenile Psittacosaurus had a growth rate similar to Orodromeus, slower than that of Maiasaura, Dysalotosaurus, or hadrosaurs consistent with small body size. Our results support previous studies that demonstrated that the orientation of vascular canals is likely not solely reflective of growth rate, but is also affected by underlying biomechanical, structural processes. The number of studies done on theropod and sauropodomorph histology dwarfs those of ornithischians. More studies of ornithischian histology are necessary in order to better establish phylogenetic trends in microstructure and to learn more about growth in this important clade.


Asunto(s)
Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Técnicas Histológicas/métodos , Animales , Tamaño Corporal , Desarrollo Óseo , China , Dinosaurios/fisiología , Filogenia
3.
PeerJ ; 2: e252, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24688836

RESUMEN

Centrosaurus apertus, a large bodied ceratopsid from the Late Cretaceous of North America, is one of the most common fossils recovered from the Belly River Group. This fossil record shows a wide diversity in morphology and size, with specimens ranging from putative juveniles to fully-grown individuals. The goal of this study was to reconstruct the ontogenetic changes that occur in the craniofacial skeleton of C. apertus through a quantitative cladistic analysis. Forty-seven cranial specimens were independently coded in separate data matrices for 80 hypothetical multistate growth characters and 130 hypothetical binary growth characters. Both analyses yielded the max-limit of 100,000 most parsimonious saved trees and the strict consensus collapsed into large polytomies. In order to reduce conflict resulting from missing data, fragmentary individuals were removed and the analyses were rerun. Among both the complete and the reduced data sets the multistate analyses recovered a shorter tree with a higher consistency index (CI) than the additive binary data sets. The arrangement within the trees shows a progression of specimens with a recurved nasal horn in the least mature individuals, followed by specimens with straight nasal horns in relatively more mature individuals, and finally specimens with procurved nasal horns in the most mature individuals. The most mature individuals are further characterized by the reduction of the cranial horn ornamentations in late growth stages, a trait that similarly occurs in the growth of other dinosaurs. Bone textural changes were found to be sufficient proxies for relative maturity in individuals that have not reached adult size. Additionally, frill length is congruent with relative maturity status and makes an acceptable proxy for ontogenetic status, especially in smaller individuals. In adult-sized individuals, the fusion of the epiparietals and episquamosals and the orientation of the nasal horn are the best indicators of relative maturity. This study recovers no clear evidence for sexually specific display structures or size dimorphism in C. apertus.

4.
J R Soc Interface ; 11(96): 20140277, 2014 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-24806709

RESUMEN

Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning-X-ray fluorescence (SRS-XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20-100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS-XRF combined with microfocus elemental mapping (2-20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue.


Asunto(s)
Aves/anatomía & histología , Remodelación Ósea , Curación de Fractura , Sincrotrones , Animales , Huesos/anatomía & histología , Huesos/patología , Huesos/fisiología , Dinosaurios/anatomía & histología , Fósiles/anatomía & histología
5.
Anat Rec (Hoboken) ; 295(4): 610-4, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22344791

RESUMEN

Recent biomechanical evidence has fuelled debate surrounding the winter habits of the hadrosaurian dinosaur Edmontosaurus (ca. 70 Ma). Using histological characteristics recorded in bone, we show that polar Edmontosaurus endured the long winter night. In contrast, the bone microstructure of temperate Edmontosaurus is inconsistent with a perennially harsh environment. Differences in the bone microstructure of polar and temperate Edmontosaurus consequently dispute the hypothesis that polar populations were migratory. The overwintering signal preserved in the microstructure of polar Edmontosaurus bone offers significant insight into the life history of dinosaurs within the Late Cretaceous Arctic.


Asunto(s)
Dinosaurios/fisiología , Estaciones del Año , Animales , Regiones Árticas
6.
Anat Rec (Hoboken) ; 292(9): 1485-500, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19711483

RESUMEN

The search for criteria for aging non-mammalian fossil vertebrates has preoccupied paleobiologists in recent years. Previous studies of the long bones of pterosaurs and modern and subfossil birds as well as of cranial material of centrosaurine ceratopsid dinosaurs have documented variations in surface textures that seem to be ontogenetically related. In this study, long bones from the centrosaurine ceratopsid genera Centrosaurus, Einiosaurus, and Pachyrhinosaurus are examined to test the hypothesis that changes in bone surface textures and reduction of surface porosity could be correlated with size (and presumably age) classes, as has been previously documented in pterosaurs and birds. The data set includes 141 bones representing all six long bone elements, collected from monodominant centrosaurine bone beds. Bone surface patterns are documented by macroscopic visual examination, and a sequence of five texture classes ordered by decreasing surface porosity is described based on the common distributions of these patterns. Calculations of Spearman's rank correlation coefficients reveal significant correlations between texture class and size. The smallest bones are invariably associated with porous midshaft textures that grade to fibrous and long-grained patterns proximally and distally [Texture Class (TC) 1]. Post-hoc analysis after Kruskal-Wallis ANOVA on ranks confirms that the mean size of TC1 bones is, in most cases, significantly different than the mean size of bones in other texture classes. Results of this study suggest the presence of an ontogenetic surface textural signal in centrosaurine long bones; however, comparison of texture classes with size-independent maturity criteria is needed to clarify further the potential ontogenetic significance of higher texture classes.


Asunto(s)
Envejecimiento/fisiología , Desarrollo Óseo/fisiología , Huesos/anatomía & histología , Huesos/fisiología , Dinosaurios/anatomía & histología , Dinosaurios/crecimiento & desarrollo , Anatomía Comparada/métodos , Animales , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Fósiles , Paleontología/métodos , Esqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA