Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 184(6): 1500-1516, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33691140

RESUMEN

Social homeostasis is the ability of individuals to detect the quantity and quality of social contact, compare it to an established set-point in a command center, and adjust the effort expended to seek the optimal social contact expressed via an effector system. Social contact becomes a positive or negative valence stimulus when it is deficient or in excess, respectively. Chronic deficits lead to set-point adaptations such that reintroduction to the previous optimum is experienced as a surplus. Here, we build upon previous models for social homeostasis to include adaptations to lasting changes in environmental conditions, such as with chronic isolation.


Asunto(s)
Homeostasis , Red Nerviosa/fisiopatología , Conducta Social , Aislamiento Social , Alostasis , Animales , Humanos , Salud Mental
2.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731170

RESUMEN

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Condicionamiento Clásico , Fenómenos Electrofisiológicos , Miedo , Luz , Masculino , Memoria/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Corteza Prefrontal/fisiología
3.
Cell ; 167(1): 43-44, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662082

RESUMEN

Stepping out of an aggressively air-conditioned building into the sweltering heat evokes a number of thermoregulatory responses, both autonomic (sweating) and behavioral (peeling off a layer of clothing or seeking an iced beverage). Just as we come out of the hottest part of the summer, a study by Tan and colleagues provides an exciting breakthrough in our ability to study the neural mechanisms of keeping cool when it's hot.


Asunto(s)
Regulación de la Temperatura Corporal , Marcadores Genéticos , Vestuario , Calor , Humanos , Sudoración
5.
Cell ; 164(4): 617-31, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871628

RESUMEN

The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP.


Asunto(s)
Neuronas Dopaminérgicas/patología , Núcleo Dorsal del Rafe/patología , Soledad , Animales , Dopamina/metabolismo , Núcleo Dorsal del Rafe/fisiopatología , Ácido Glutámico/metabolismo , Técnicas In Vitro , Masculino , Ratones , Optogenética , Técnicas de Placa-Clamp , Recompensa , Sinapsis , Área Tegmental Ventral/fisiología
6.
Cell ; 160(3): 528-41, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635460

RESUMEN

The lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces "compulsive" sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder.


Asunto(s)
Conducta Animal , Área Hipotalámica Lateral/fisiología , Área Tegmental Ventral/fisiología , Animales , Retroalimentación , Área Hipotalámica Lateral/citología , Ratones , Modelos Neurológicos , Vías Nerviosas , Neuronas/citología , Recompensa , Sacarosa , Ácido gamma-Aminobutírico/metabolismo
7.
Cell ; 157(7): 1535-51, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949967

RESUMEN

Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics.


Asunto(s)
Vías Nerviosas , Núcleo Accumbens/fisiología , Conducta Social , Área Tegmental Ventral/fisiología , Animales , Señalización del Calcio , Femenino , Ratones , Núcleo Accumbens/citología , Fotometría/métodos , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Recompensa , Rodopsina/química , Rodopsina/metabolismo , Área Tegmental Ventral/citología
8.
Nature ; 603(7902): 667-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296862

RESUMEN

Most social species self-organize into dominance hierarchies1,2, which decreases aggression and conserves energy3,4, but it is not clear how individuals know their social rank. We have only begun to learn how the brain represents social rank5-9 and guides behaviour on the basis of this representation. The medial prefrontal cortex (mPFC) is involved in social dominance in rodents7,8 and humans10,11. Yet, precisely how the mPFC encodes relative social rank and which circuits mediate this computation is not known. We developed a social competition assay in which mice compete for rewards, as well as a computer vision tool (AlphaTracker) to track multiple, unmarked animals. A hidden Markov model combined with generalized linear models was able to decode social competition behaviour from mPFC ensemble activity. Population dynamics in the mPFC predicted social rank and competitive success. Finally, we demonstrate that mPFC cells that project to the lateral hypothalamus promote dominance behaviour during reward competition. Thus, we reveal a cortico-hypothalamic circuit by which the mPFC exerts top-down modulation of social dominance.


Asunto(s)
Hipotálamo , Corteza Prefrontal , Animales , Área Hipotalámica Lateral , Ratones , Recompensa , Conducta Social
9.
Nature ; 608(7923): 586-592, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859170

RESUMEN

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Asunto(s)
Complejo Nuclear Basolateral , Aprendizaje , Vías Nerviosas , Neurotensina , Castigo , Recompensa , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/fisiología , Calcio/metabolismo , Señales (Psicología) , Plasticidad Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talámicos/citología , Núcleos Talámicos/fisiología
10.
Nat Rev Neurosci ; 23(9): 535-550, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35831442

RESUMEN

Social signals can serve as potent emotional triggers with powerful impacts on processes from cognition to valence processing. How are social signals dynamically and flexibly associated with positive or negative valence? How do our past social experiences and present social standing shape our motivation to seek or avoid social contact? We discuss a model in which social attributes, social history, social memory, social rank and social isolation can flexibly influence valence assignment to social stimuli, termed here as 'social valence'. We emphasize how the brain encodes each of these four factors and highlight the neural circuits and mechanisms that play a part in the perception of social attributes, social memory and social rank, as well as how these factors affect valence systems associated with social stimuli. We highlight the impact of social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may account for the potential shift in valence of social stimuli from positive to negative as the period of isolation extends in time. Collectively, this Review identifies factors that control the formation and attribution of social valence - integrating diverse areas of research and emphasizing their unique contributions to the categorization of social stimuli as positive or negative.


Asunto(s)
Encéfalo , Emociones , Cognición , Humanos , Motivación
11.
Nature ; 563(7731): 397-401, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405240

RESUMEN

Dopamine modulates medial prefrontal cortex (mPFC) activity to mediate diverse behavioural functions1,2; however, the precise circuit computations remain unknown. One potentially unifying model by which dopamine may underlie a diversity of functions is by modulating the signal-to-noise ratio in subpopulations of mPFC neurons3-6, where neural activity conveying sensory information (signal) is amplified relative to spontaneous firing (noise). Here we demonstrate that dopamine increases the signal-to-noise ratio of responses to aversive stimuli in mPFC neurons projecting to the dorsal periaqueductal grey (dPAG). Using an electrochemical approach, we reveal the precise time course of pinch-evoked dopamine release in the mPFC, and show that mPFC dopamine biases behavioural responses to aversive stimuli. Activation of mPFC-dPAG neurons is sufficient to drive place avoidance and defensive behaviours. mPFC-dPAG neurons display robust shock-induced excitations, as visualized by single-cell, projection-defined microendoscopic calcium imaging. Finally, photostimulation of dopamine terminals in the mPFC reveals an increase in the signal-to-noise ratio in mPFC-dPAG responses to aversive stimuli. Together, these data highlight how dopamine in the mPFC can selectively route sensory information to specific downstream circuits, representing a potential circuit mechanism for valence processing.


Asunto(s)
Reacción de Prevención/fisiología , Dopamina/metabolismo , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Animales , Señalización del Calcio , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Ratas , Ratas Long-Evans , Relación Señal-Ruido , Análisis de la Célula Individual , Cola (estructura animal)
12.
Proc Natl Acad Sci U S A ; 117(47): 29872-29882, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33154155

RESUMEN

The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly switches between them. Recent research on artificial neural networks trained by reinforcement learning has made it possible to model fundamental processes underlying schema encoding and storage. Yet how the brain is able to create new schemas while preserving and utilizing old schemas remains unclear. Here we propose a simple neural network framework that incorporates hierarchical gating to model the prefrontal cortex's ability to flexibly encode and use multiple disparate schemas. We show how gating naturally leads to transfer learning and robust memory savings. We then show how neuropsychological impairments observed in patients with prefrontal damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE, provides a fundamental framework for how the prefrontal cortex may handle the abundance of schemas necessary to navigate the real world.


Asunto(s)
Aprendizaje/fisiología , Modelos Neurológicos , Redes Neurales de la Computación , Corteza Prefrontal/fisiología , Refuerzo en Psicología , Técnicas de Observación Conductual , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/fisiopatología , Humanos , Trastornos Mentales/etiología , Trastornos Mentales/fisiopatología , Corteza Prefrontal/lesiones
13.
Nature ; 517(7534): 284-92, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25592533

RESUMEN

The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits.


Asunto(s)
Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Conducta/fisiología , Vías Nerviosas/fisiología , Animales , Evolución Biológica , Miedo , Humanos , Memoria/fisiología , Recompensa
14.
Nature ; 520(7549): 675-8, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25925480

RESUMEN

The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive and negative. Different populations of BLA neurons may encode fearful or rewarding associations, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained unknown. Here we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) undergo opposing synaptic changes following fear or reward conditioning. We find that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impairs fear conditioning and enhances reward conditioning. We characterize these functionally distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. Overall, we provide a mechanistic explanation for the representation of positive and negative associations within the amygdala.


Asunto(s)
Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Vías Nerviosas , Neuronas/fisiología , Recompensa , Animales , Condicionamiento Clásico , Miedo/psicología , Perfilación de la Expresión Génica , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Motivación , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de la radiación , Refuerzo en Psicología , Transcripción Genética
15.
Nature ; 496(7444): 219-23, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23515158

RESUMEN

Behavioural states in mammals, such as the anxious state, are characterized by several features that are coordinately regulated by diverse nervous system outputs, ranging from behavioural choice patterns to changes in physiology (in anxiety, exemplified respectively by risk-avoidance and respiratory rate alterations). Here we investigate if and how defined neural projections arising from a single coordinating brain region in mice could mediate diverse features of anxiety. Integrating behavioural assays, in vivo and in vitro electrophysiology, respiratory physiology and optogenetics, we identify a surprising new role for the bed nucleus of the stria terminalis (BNST) in the coordinated modulation of diverse anxiety features. First, two BNST subregions were unexpectedly found to exert opposite effects on the anxious state: oval BNST activity promoted several independent anxious state features, whereas anterodorsal BNST-associated activity exerted anxiolytic influence for the same features. Notably, we found that three distinct anterodorsal BNST efferent projections-to the lateral hypothalamus, parabrachial nucleus and ventral tegmental area-each implemented an independent feature of anxiolysis: reduced risk-avoidance, reduced respiratory rate, and increased positive valence, respectively. Furthermore, selective inhibition of corresponding circuit elements in freely moving mice showed opposing behavioural effects compared with excitation, and in vivo recordings during free behaviour showed native spiking patterns in anterodorsal BNST neurons that differentiated safe and anxiogenic environments. These results demonstrate that distinct BNST subregions exert opposite effects in modulating anxiety, establish separable anxiolytic roles for different anterodorsal BNST projections, and illustrate circuit mechanisms underlying selection of features for the assembly of the anxious state.


Asunto(s)
Ansiedad/fisiopatología , Vías Nerviosas/fisiología , Núcleos Septales/fisiopatología , Potenciales de Acción , Animales , Ansiedad/patología , Electrofisiología , Ratones , Optogenética , Núcleos Septales/anatomía & histología , Núcleos Septales/citología
16.
Nature ; 493(7433): 537-541, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23235822

RESUMEN

Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.


Asunto(s)
Depresión/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Animales , Depresión/inducido químicamente , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de la radiación , Femenino , Masculino , Ratones , Modelos Neurológicos , Núcleo Accumbens/metabolismo , Optogenética , Fenotipo , Ratas , Ratas Long-Evans , Estrés Psicológico/fisiopatología , Factores de Tiempo , Área Tegmental Ventral/citología
17.
Nature ; 492(7429): 428-32, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23160494

RESUMEN

The prefrontal cortex (PFC) is thought to participate in high-level control of the generation of behaviours (including the decision to execute actions); indeed, imaging and lesion studies in human beings have revealed that PFC dysfunction can lead to either impulsive states with increased tendency to initiate action, or to amotivational states characterized by symptoms such as reduced activity, hopelessness and depressed mood. Considering the opposite valence of these two phenotypes as well as the broad complexity of other tasks attributed to PFC, we sought to elucidate the PFC circuitry that favours effortful behavioural responses to challenging situations. Here we develop and use a quantitative method for the continuous assessment and control of active response to a behavioural challenge, synchronized with single-unit electrophysiology and optogenetics in freely moving rats. In recording from the medial PFC (mPFC), we observed that many neurons were not simply movement-related in their spike-firing patterns but instead were selectively modulated from moment to moment, according to the animal's decision to act in a challenging situation. Surprisingly, we next found that direct activation of principal neurons in the mPFC had no detectable causal effect on this behaviour. We tested whether this behaviour could be causally mediated by only a subclass of mPFC cells defined by specific downstream wiring. Indeed, by leveraging optogenetic projection-targeting to control cells with specific efferent wiring patterns, we found that selective activation of those mPFC cells projecting to the brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus implicated in major depressive disorder, induced a profound, rapid and reversible effect on selection of the active behavioural state. These results may be of importance in understanding the neural circuitry underlying normal and pathological patterns of action selection and motivation in behaviour.


Asunto(s)
Conducta Animal/fisiología , Motivación/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Núcleos del Rafe/fisiología , Natación/fisiología , Potenciales de Acción , Animales , Axones/fisiología , Depresión/psicología , Electrofisiología , Locomoción/fisiología , Masculino , Optogenética , Ratas , Ratas Long-Evans , Sinapsis/fisiología , Factores de Tiempo
18.
Nature ; 491(7423): 212-7, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23064228

RESUMEN

Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (γ-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.


Asunto(s)
Reacción de Prevención/fisiología , Vías Nerviosas/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Axones/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Habénula/citología , Habénula/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Receptores Dopaminérgicos/metabolismo , Sinapsis/metabolismo , Área Tegmental Ventral/citología
19.
Nat Rev Neurosci ; 13(4): 251-66, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22430017

RESUMEN

Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.


Asunto(s)
Encefalopatías/fisiopatología , Red Nerviosa/fisiopatología , Neuroimagen/métodos , Neuronas/fisiología , Animales , Modelos Animales de Enfermedad
20.
Nature ; 471(7338): 358-62, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21389985

RESUMEN

Anxiety--a sustained state of heightened apprehension in the absence of immediate threat--becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)--achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA--exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA-CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.


Asunto(s)
Amígdala del Cerebelo/fisiología , Ansiedad/fisiopatología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de la radiación , Animales , Trastornos de Ansiedad/fisiopatología , Halorrodopsinas/metabolismo , Luz , Ratones , Modelos Neurológicos , Vías Nerviosas/fisiología , Vías Nerviosas/efectos de la radiación , Neuronas/fisiología , Neuronas/efectos de la radiación , Estrés Fisiológico/fisiología , Sinapsis/fisiología , Sinapsis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA