Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36861375

RESUMEN

Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.


Asunto(s)
Desnitrificación , Paracoccus , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Genómica , Paracoccus/genética , Formaldehído
2.
Artículo en Inglés | MEDLINE | ID: mdl-34016249

RESUMEN

A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas. The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes. Computation of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.


Asunto(s)
Pradera , Filogenia , Pseudomonas/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Alemania , Nitratos/metabolismo , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Artículo en Inglés | MEDLINE | ID: mdl-33502311

RESUMEN

The genera Proteus and Cosenzaea are closely related members of the family Morganellaceae. The genus Cosenzaea consists of the species Cosenzaea myxofaciens originally separated from the genus Proteus by rpoB gene analysis. Due to the high similarity of the 16S rRNA genes between species of both genera, the taxonomic status is here re-evaluated by a genome-based approach. Based on a core genome phylogeny and genome relatedness indices, it is shown that the taxonomy and nomenclature given for the basonym Proteus myxofaciens is more appropriate. Therefore, we propose to use this name in preference. Furthermore, the species status of Proteus terrae and Proteus cibarius was reassessed. Both species are related at subspecies level by digital DNA-DNA hybridization (dDDH) analysis. Additionally, average amino acid identity (AAI) and average nucleotide identity (ANI) do not support a separate species status, and therefore it is proposed to classify P. cibarius as a subspecies of P. terrae. Consequently, both species are being renamed Proteus terrae subsp. cibarius subsp. nov. and Proteus terrae subsp. terrae subsp. nov., respectively. The genome relatedness indices revealed a close relationship of the Proteus genomospecies 5 with P. terrae subsp. terrae. Thus, it has been assigned to the same subspecies.

4.
Glob Chang Biol ; 22(8): 2861-74, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26946456

RESUMEN

Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant-soil-microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant-microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat-pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment, we labeled the canopy with (13) CO2 with the goal of (i) determining the strength of plant-microbe carbon linkages under control, drought, heat and heat-drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant-soil carbon continuum based on (13) C-labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short-term changes in the active microbial community. The treatments did not sever within-plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High-throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat-drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant-soil-microbial dynamics rather than from direct effects of drought and heat on soil microbes alone.


Asunto(s)
Cambio Climático , Microbiología del Suelo , Sequías , Bosques , Calor , ARN Ribosómico 16S , Suelo
5.
Int J Syst Evol Microbiol ; 66(6): 2354-2361, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27030972

RESUMEN

In the context of studying the bacterial community involved in nitrogen transformation processes in arable soils exposed to different extents of erosion and sedimentation in a long-term experiment (CarboZALF), a strain was isolated that reduced nitrate to nitrous oxide without formation of molecular nitrogen. The presence of the functional gene nirK, encoding the respiratory copper-containing nitrite reductase, and the absence of the nitrous oxide reductase gene nosZ indicated a truncated denitrification pathway and that this bacterium may contribute significantly to the formation of the important greenhouse gas N2O. Phylogenetic analysis based on the 16S rRNA gene sequence and the housekeeping genes recA and atpD demonstrated that the investigated soil isolate belongs to the genus Rhizobium. The closest phylogenetic neighbours were the type strains of Rhizobium. subbaraonis and Rhizobium. halophytocola. The close relationship with R. subbaraonis was reflected by similarity analysis of the recA and atpD genes and their amino acid positions. DNA-DNA hybridization studies revealed genetic differences at the species level, which were substantiated by analysis of the whole-cell fatty acid profile and several distinct physiological characteristics. Based on these results, it was concluded that the soil isolate represents a novel species of the genus Rhizobium, for which the name Rhizobium azooxidifex sp. nov. (type strain Po 20/26T=DSM 100211T=LMG 28788T) is proposed.


Asunto(s)
Óxido Nítrico/metabolismo , Filogenia , Rhizobium/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desnitrificación , Ácidos Grasos/química , Genes Bacterianos , Ciclo del Nitrógeno , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Análisis de Secuencia de ADN
6.
J Bone Miner Metab ; 34(1): 55-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25687428

RESUMEN

The first objective of this study was to determine normative digital X-ray radiogrammetry (DXR) values, based on original digital images, in a pediatric population (aged 6-18 years). The second aim was to compare these reference data with patients suffering from distal radius fractures, whereas both cohorts originated from the same geographical region and were evaluated using the same technical parameters as well as inclusion and exclusion criteria. DXR-BMD and DXR-MCI of the metacarpal bones II-IV were assessed on standardized digital hand radiographs, without printing or scanning procedures. DXR parameters were estimated separately by gender and among six age groups; values in the fracture group were compared to age- and gender-matched normative data using Student's t tests and Z scores. In the reference cohort (150 boys, 138 girls), gender differences were found in bone mineral density (DXR-BMD), with higher values for girls from 11 to 14 years and for boys from 15 to 18 years (p < 0.05). Girls had higher normative metacarpal index (DXR-MCI) values than boys, with significant differences at 11-14 years (p < 0.05). In the case-control investigation, the fracture group (95 boys, 69 girls) presented lower DXR-BMD at 15-18 years in boys and 13-16 years in girls vs. the reference cohort (p < 0.05); DXR-MCI was lower at 11-18 years in boys and 11-16 years in girls (p < 0.05). Mean Z scores in the fracture group for DXR-BMD were -0.42 (boys) and -0.46 (girls), and for DXR-MCI were -0.51 (boys) and -0.53 (girls). These findings indicate that the fully digital DXR technique can be accurately applied in pediatric populations ≥ 6 years of age. The lower DXR-BMD and DXR-MCI values in the fracture group suggest promising early identification of individuals with increased fracture risk, without the need for additional radiation exposure, enabling the initiation of prevention strategies to possibly reduce the incidence of osteoporosis later in life.


Asunto(s)
Fracturas del Radio/diagnóstico por imagen , Absorciometría de Fotón , Adolescente , Densidad Ósea/fisiología , Femenino , Humanos , Masculino , Intensificación de Imagen Radiográfica , Valores de Referencia , Rayos X
7.
Antonie Van Leeuwenhoek ; 108(6): 1457-1468, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26437638

RESUMEN

In the context of studying the influence of N-fertilization on N2 and N2O flux rates in relation to the soil bacterial community composition in fen peat grassland, a group of bacterial strains was isolated that performed dissimilatory nitrate reduction to ammonium and concomitantly produced N2O. The amount of nitrous oxide produced was influenced by the C/N ratio of the medium. The potential to generate nitrous oxide was increased by higher availability of nitrate-N. Phylogenetic analysis based on the 16S rRNA and the rpoB gene sequences demonstrated that the investigated isolates belong to the genus Proteus, showing high similarity with the respective type strains of Proteus vulgaris and Proteus penneri. DNA-DNA hybridization studies revealed differences at the species level. These differences were substantiated by MALDI-TOF MS analysis and several distinct physiological characteristics. On the basis of these results, it was concluded that the soil isolates represent a novel species for which the name Proteus terrae sp. nov. (type strain N5/687(T) =DSM 29910(T) =LMG 28659(T)) is proposed.


Asunto(s)
Amoníaco/metabolismo , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Proteus/clasificación , Proteus/aislamiento & purificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Carbono/metabolismo , Análisis por Conglomerados , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/genética , Deinococcus , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Hibridación de Ácido Nucleico , Filogenia , Proteus/genética , Proteus/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Syst Appl Microbiol ; 47(4): 126516, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772267

RESUMEN

The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed. In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.


Asunto(s)
ADN Bacteriano , Filogenia , Enfermedades de las Plantas , ARN Ribosómico 16S , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Genoma Bacteriano/genética , Achromobacter/genética , Achromobacter/clasificación , Achromobacter/aislamiento & purificación , Hojas de la Planta/microbiología , Apiaceae/microbiología
9.
Plants (Basel) ; 11(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36559599

RESUMEN

Some European ash trees show tolerance towards dieback caused by the invasive pathogen Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups. One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied strains of the species. A functional analysis of the genome revealed features associated with the synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings that were exposed to H. fraxineus infection. This effect was maintained over a period of three years and was accompanied by a significant shift in the bacterial microbiome composition one year after inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves via colonization resistance or indirectly by affecting the microbiome.

10.
Microorganisms ; 10(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422374

RESUMEN

Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).

11.
Syst Appl Microbiol ; 45(4): 126333, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35605315

RESUMEN

A group of isolates of the genus Luteimonas was characterised, which represented a specific component of the healthy core microbiome of Fraxinus excelsior in forest districts with a high infection rate of H. fraxineus, the causal agent of ash dieback. Based on phylogenomic and phenotypic analyses, a clear differentiation from related Luteimonas species was shown. Comparisons of the overall genome relatedness indices with the closest phylogenetic neighbours resulted in values below the recommended species cut-off levels. In addition, differences in several physiological and chemotaxonomic traits allowed a clear demarcation from the type strains of closely related species. Conclusively, the strain group was considered to represent a novel species in the genus Luteimonas, for which the name Luteimonas fraxinea sp. nov. is proposed, with strain D4P002T (=DSM 113273T = LMG 32455T) as the type strain. A functional analysis of the genome revealed features particularly associated with attachment, biofilm production and motility, indicating the ability of D4P002T to effectively colonise ash leaves. In nursery trials, ash seedlings inoculated with this strain showed suppression of the pathogen over a period of three years. This effect was accompanied by a significant shift in the bacterial microbiome of the plants. Altogether, the exclusive occurrence in the microbiome of tolerant ash trees, the genetic background and the results of the inoculation experiment suggest that strain D4P002T may suppress the penetration and spreading of H. fraxineus in or on ash leaves via colonisation resistance or trigger a priming effect of plant defences against the pathogen.


Asunto(s)
Fraxinus , Xanthomonadaceae , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fraxinus/genética , Fraxinus/microbiología , Genómica , Filogenia , ARN Ribosómico 16S/genética , Xanthomonadaceae/genética
12.
Strahlenther Onkol ; 187(3): 183-90, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21347638

RESUMEN

PURPOSE: To determine the prostate volumes defined by using MRI and CT scans, as well as the difference between prostate delineation in MRI and CT in three dimensions (3D). A further goal was to use MRI to identify subgroups of patients in whom seminal vesicle irradiation can be avoided. METHODS AND MATERIALS: A total of 294 patients with biopsy-proven prostate cancer (MRI stages: T(1), 16 [5%]; T(2), 84 [29%]; T(3), 191 [65%]; T(4), 3 [1%]) underwent pelvic CT and MRI scans before intensity-modulated radiation therapy (IMRT) planning. 3D images were used to compare the prostate volumes defined by superimposed MR and CT images. Prostate volumes were calculated in cm(3). RESULTS: The mean prostate volume defined by MRI (44.3 cm(3) [range, 8.8-182.8 cm(3)]) was 35% smaller than that defined by CT (68.5 cm(3) [range, 15.2-241.3 cm(3)]). The areas of nonagreement were observed predominantly in the most superior and inferior portions of the prostate. The incidence of seminal vesicle invasion (SVI) identified by MRI was 63% (n = 182 of 290). The median length of SVI was 2.6 cm (range, 1.1-4.7 cm; 62% of the median SV length). The low-risk patients (59%, n = 171 of 290) calculated by applying the Roach and Diaz formula had a SVI rate of 57% (n = 97 of 171), the high-risk patients (41%, n = 119 of 290) of 71% (n = 85 of 119). CONCLUSIONS: Compared with MRI, CT scans overestimate prostate volume by 35%. CT-MRI image fusion-based treatment planning allows more accurate prediction of the correct staging and more precise target volume identification in prostate cancer patients.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Humanos , Metástasis Linfática/patología , Metástasis Linfática/radioterapia , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Tamaño de los Órganos , Próstata/efectos de la radiación , Neoplasias de la Próstata/patología , Dosificación Radioterapéutica , Vesículas Seminales/efectos de la radiación , Carga Tumoral
13.
Int J Syst Evol Microbiol ; 61(Pt 5): 1039-1047, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20511458

RESUMEN

In the context of studying the effects of transgenic fructan-producing potatoes on the community structure of phyllosphere bacteria, a group of strains closely related to the species Leifsonia ginsengi was isolated. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the new isolates and L. ginsengi DSM 19088(T) formed a lineage at the genus level and this finding was supported by chemotaxonomic characterization. The peptidoglycan type of the representative isolate, K134/01(T), and L. ginsengi DSM 19088(T) was B2γ, with d- and l-diaminobutyric acid as the diagnostic diamino acid and glycine, alanine and threo-3-hydroxyglutamic acid. The almost-complete substitution of glutamic acid by threo-3-hydroxyglutamic acid supported the differentiation of the new strains from recognized species of the genus Leifsonia. Furthermore, the detection of substantial amounts of the fatty acid cyclohexyl-C(17 : 0) in the new isolates and L. ginsengi DSM 19088(T) was a prominent chemotaxonomic feature for a clear demarcation of these strains from all genera of the family Microbacteriaceae that display the B2γ cell-wall type. Comparative phylogenetic and phenotypic analyses of the isolates and L. ginsengi DSM 19088(T) revealed the separate species status of the isolates. On the basis of these results, it is proposed that L. ginsengi should be classified as the type species of a novel genus, Herbiconiux gen. nov., with the name Herbiconiux ginsengi gen. nov., comb. nov. (type strain wged11(T) = CGMCC 4.3491(T) = JCM 13908(T) = DSM 19088(T) = NBRC 104580(T)). The phyllosphere isolates are assigned to a novel species, Herbiconiux solani sp. nov. (type strain K134/01(T) = DSM 19813(T) = LMG 24387(T) = NBRC 106740(T)).


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Rizosfera , Solanum tuberosum/microbiología , Actinomycetales/genética , Actinomycetales/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/metabolismo , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Suelo
14.
Environ Microbiome ; 16(1): 18, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641981

RESUMEN

BACKGROUND: The native crop bacterial microbiota of the rhizosphere is envisioned to be engineered for sustainable agriculture. This requires the identification of keystone rhizosphere Bacteria and an understanding on how these govern crop-specific microbiome assembly from soils. We identified the metabolically active bacterial microbiota (SSU RNA) inhabiting two compartments of the rhizosphere of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale), and oilseed rape (Brassica napus L.) at different growth stages. RESULTS: Based on metabarcoding analysis the bacterial microbiota was shaped by the two rhizosphere compartments, i.e. close and distant. Thereby implying a different spatial extent of bacterial microbiota acquirement by the cereals species versus oilseed rape. We derived core microbiota of each crop species. Massilia (barley and wheat) and unclassified Chloroflexi of group 'KD4-96' (oilseed rape) were identified as keystone Bacteria by combining LEfSe biomarker and network analyses. Subsequently, differential associations between networks of each crop species' core microbiota revealed host plant-specific interconnections for specific genera, such as the unclassified Tepidisphaeraceae 'WD2101 soil group'. CONCLUSIONS: Our results provide keystone rhizosphere Bacteria derived from for crop hosts and revealed that cohort subnetworks and differential associations elucidated host species effect that was not evident from differential abundance of single bacterial genera enriched or unique to a specific plant host. Thus, we underline the importance of co-occurrence patterns within the rhizosphere microbiota that emerge in crop-specific microbiomes, which will be essential to modify native crop microbiomes for future agriculture and to develop effective bio-fertilizers.

15.
Front Microbiol ; 12: 687463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220780

RESUMEN

Plant-associated Stenotrophomonas isolates have great potential for plant growth promotion, especially under stress conditions, due to their ability to promote tolerance to abiotic stresses such as salinity or drought. The endophytic strain Stenotrophomonas sp. 169, isolated from a field-grown poplar, increased the growth of inoculated in vitro plants, with a particular effect on root development, and was able to stimulate the rooting of poplar cuttings in the greenhouse. The strain produced high amounts of the plant growth-stimulating hormone auxin under in vitro conditions. The comparison of the 16S rRNA gene sequences and the phylogenetic analysis of the core genomes showed a close relationship to Stenotrophomonas chelatiphaga and a clear separation from Stenotrophomonas maltophilia. Whole genome sequence analysis revealed functional genes potentially associated with attachment and plant colonization, growth promotion, and stress protection. In detail, an extensive set of genes for twitching motility, chemotaxis, flagella biosynthesis, and the ability to form biofilms, which are connected with host plant colonization, could be identified in the genome of strain 169. The production of indole-3-acetic acid and the presence of genes for auxin biosynthesis pathways and the spermidine pathway could explain the ability to promote plant growth. Furthermore, the genome contained genes encoding for features related to the production of different osmoprotective molecules and enzymes mediating the regulation of stress tolerance and the ability of bacteria to quickly adapt to changing environments. Overall, the results of physiological tests and genome analysis demonstrated the capability of endophytic strain 169 to promote plant growth. In contrast to related species, strain 169 can be considered non-pathogenic and suitable for biotechnology applications.

16.
Front Microbiol ; 12: 773116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803993

RESUMEN

Flooding affects both above- and below-ground ecosystem processes, and it represents a substantial threat for crop and cereal productivity under climate change. Plant-associated microbiota play a crucial role in plant growth and fitness, but we still have a limited understanding of the response of the crop-microbiota complex under extreme weather events, such as flooding. Soil microbes are highly sensitive to abiotic disturbance, and shifts in microbial community composition, structure and functions are expected when soil conditions are altered due to flooding events (e.g., anoxia, pH alteration, changes in nutrient concentration). Here, we established a pot experiment to determine the effects of flooding stress on the spring wheat-microbiota complex. Since plant phenology could be an important factor in the response to hydrological stress, flooding was induced only once and at different plant growth stages (PGSs), such as tillering, booting and flowering. After each flooding event, we measured in the control and flooded pots several edaphic and plant properties and characterized the bacterial community associated to the rhizosphere and roots of wheat plant using a metabarcoding approach. In our study, flooding caused a significant reduction in plant development and we observed dramatic shifts in bacterial community composition at each PGS in which the hydrological stress was induced. However, a more pronounced disruption in community assembly was always shown in younger plants. Generally, flooding caused a (i) significant increase of bacterial taxa with anaerobic respiratory capabilities, such as members of Firmicutes and Desulfobacterota, (ii) a significant reduction in Actinobacteria and Proteobacteria, (iii) depletion of several putative plant-beneficial taxa, and (iv) increases of the abundance of potential detrimental bacteria. These significant differences in community composition between flooded and control samples were correlated with changes in soil conditions and plant properties caused by the hydrological stress, with pH and total N as the soil, and S, Na, Mn, and Ca concentrations as the root properties most influencing microbial assemblage in the wheat mircobiota under flooding stress. Collectively, our findings demonstrated the role of flooding on restructuring the spring wheat microbiota, and highlighted the detrimental effect of this hydrological stress on plant fitness and performance.

17.
Front Microbiol ; 11: 590944, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193255

RESUMEN

The invasive ascomycete Hymenoscyphus fraxineus has been threatening Fraxinus excelsior populations throughout Europe for over two decades. Since the infection and first colonization by the pathogen occurs in leaves, leaf-colonizing microorganisms have been discussed as a barrier and as possible biocontrol agents against the disease. To identify fungal groups with health-supporting potential, we compared the fungal microbiota of compound leaves from susceptible and tolerant ash trees in four ash stands with high H. fraxineus exposure. The fungal communities were analyzed both culture-independently by ITS2 amplicon sequencing and by the taxonomic classification of 1,704 isolates using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) or sequencing of the entire ITS region. The fungal community structure did not show significant differences depending on the health status. However, for several OTUs and a MALDI group, a significantly higher abundance was found in tolerant ash trees. Thus, the yeast Papiliotrema flavescens was significantly increased and accounted for 12.3% of the mycobiome of tolerant ashes (OTU0003), and it had also a distinctly higher abundance among the isolates. The filamentous ascomycete Sarocladium strictum was increased 24-fold among the isolates of tolerant trees, but its abundance was comparably low. An in vitro screening for the growth inhibition of the pathogen via cocultivation resulted in 28 yeast-like isolates and 79 filamentous fungi with antagonistic activity. A statistical cocultivation test on two H. fraxineus strains confirmed six of the yeast-like isolates that suppressed H. fraxineus significantly, from 39-50%, two of them through a fungicidal effect. The highest inhibition rates among the yeasts were found for three isolates belonging to Aureobasidium pullulans and P. flavescens. The cocultivation test of the filamentous isolates revealed higher effects compared to the yeasts. Four isolates showed significant inhibition of both H. fraxineus strains with a rate of 72-100%, and five further isolates inhibited only one H. fraxineus strain significantly. The most effective isolates were members of the genus Cladosporium. During the next step, in planta tests will be necessary to verify the efficacy of the antagonistic isolates and to assess their suitability as biocontrol agents.

18.
Front Microbiol ; 11: 966, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547506

RESUMEN

In the last few years, the alarming spread of Hymenoscyphus fraxineus, the causal agent of ash dieback, has resulted in a substantial threat to native ash stands in central and northern Europe. Since leaves and leaf petioles are the primary infection sites, phyllosphere microorganisms are presumed to interact with the pathogen and are discussed as a source of biocontrol agents. We studied compound leaves from susceptible and visible infection-free trees in four ash stands with a high likelihood of infection to assess a possible variation in the bacterial microbiota, depending on the health status of the trees. The bacterial community was analyzed by culture-independent 16S rRNA gene amplicon sequencing and through the isolation and taxonomic classification of 2,589 isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The bacterial community structure did not show significant differences. However, a set of amplicon sequence variants (ASVs) and MALDI groups belonging to Luteimonas, Aureimonas, Pseudomonas, Bacillus, and Paenibacillus were distinctly increased in tolerant trees, which may be associated with the ability of the tree to resist the pathogen. The most obvious differences were observed for Luteimonas, a genus that is also exclusively present in the healthy core microbiome. In a first in vitro screen of antagonists, approximately 11% of total isolates suppressed the growth of H. fraxineus, but a statistical test with two different H. fraxineus strains confirmed only the antagonistic activity of 8% of these isolates. The antagonistic isolates were assigned to Bacillus velezensis, Pantoea vagans, and Pseudomonas caspiana. Overall, our study provides a set of isolates or phylogenetic groups that might be involved in the process that prevents the penetration and spread of H. fraxineus. In the next step, in planta experiments are required with a longer period of exposure to H. fraxineus to evaluate effective isolates or consortia of isolates acting through direct antagonism or competition or indirectly by inducing resistance.

19.
Pan Afr Med J ; 37: 176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33447331

RESUMEN

Systematic studies on connective tissue disorders are scarce in sub-Saharan Africa. Our aim was to analyse the published clinical data on systemic sclerosis (SSc) in sub-Saharan Africa. A systematic review was carried out in accordance with the PRISMA guidelines. We screened the Embase, PubMed and African Health Sciences databases for literature published until March 2018. Searches produced 1210 publications. After abstract and full-text screenings, 91 publications were analysed, and epidemiological information and clinical features extracted. Publications were mostly publications case reports (36%), cross-sectional studies (26%) and case series (23%) and came predominantly from South Africa (45%), Nigeria (15%) and Senegal (14%). A total of 1884 patients were reported, 66% of patients came from South Africa. The patients were between 4 and 77 years old; 83% of patients were female. Overall, 72% had diffuse SSc. Raynaud´s phenomenon was reported in 78% and skin ulcerations in 42% of patients. Focal skin hypopigmentation was common and telangiectasia not frequent. Interstitial lung involvement was reported in 50%, pulmonary hypertension in 30%, heart involvement in 28% of patients. Oesophageal reflux was observed in 70% and dysphagia in 37% of patients. Antinuclear antibodies were positive in 65% of patients. Anti-centromere autoantibodies (9.2%) and RNA polymerase 3 antibodies (7.1%) were rare and anti-fibrillarin most frequent (16.5%). SSc presentations in sub-Saharan Africa differ from those reported in Europe and America by a frequent diffuse skin involvement, focal skin hypopigmentation and a high prevalence of anti-fibrillarin autoantibodies.


Asunto(s)
Anticuerpos Antinucleares/inmunología , Autoanticuerpos/inmunología , Esclerodermia Sistémica/epidemiología , Adolescente , Adulto , África del Sur del Sahara/epidemiología , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/fisiopatología , Adulto Joven
20.
Anal Chem ; 81(11): 4456-67, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19408912

RESUMEN

An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA