Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931756

RESUMEN

Wearable in-ear electroencephalographic (EEG) devices hold significant promise for advancing brain monitoring technologies into everyday applications. However, despite the current availability of several in-ear EEG devices in the market, there remains a critical need for robust validation against established clinical-grade systems. In this study, we carried out a detailed examination of the signal performance of a mobile in-ear EEG device from Naox Technologies. Our investigation had two main goals: firstly, evaluating the hardware circuit's reliability through simulated EEG signal experiments and, secondly, conducting a thorough comparison between the in-ear EEG device and gold-standard EEG monitoring equipment. This comparison assesses correlation coefficients with recognized physiological patterns during wakefulness and sleep, including alpha rhythms, eye artifacts, slow waves, spindles, and sleep stages. Our findings support the feasibility of using this in-ear EEG device for brain activity monitoring, particularly in scenarios requiring enhanced comfort and user-friendliness in various clinical and research settings.


Asunto(s)
Oído , Electroencefalografía , Dispositivos Electrónicos Vestibles , Humanos , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Estudios de Factibilidad , Ritmo alfa , Artefactos , Sueño , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Vigilia , Encéfalo/fisiología
2.
J Sleep Res ; 31(6): e13555, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35124848

RESUMEN

Acoustic stimulation synchronized to slow oscillations in scalp electroencephalograms has been shown to enhance sleep features, which makes it promising in boosting cognitive functions as well as in the treatment of some sleep disturbances. Nevertheless, scalp electrode sensors are resource intensive and poorly tolerated by sleeping patients. The aim of this study was to investigate the potential usability of in-the-ear electroencephalography to implement auditory closed-loop stimulation during sleep. For this, we evaluated the agreement between slow oscillation recordings obtained through the in-ear sensor and those obtained simultaneously from standard scalp electrodes during naps of 13 healthy subjects. We found that in-ear activity provided enough information to automatically detect sleep slow oscillations in real-time. Based on this, we successfully enhanced scalp slow oscillations using auditory single-cycle closed-loop brain-state-dependent stimulation based on in-ear signals acquired in 11 further subjects. We conclude that in-ear sensors provide a feasible technology for the enhancement of sleep patterns, and could pave the way for new clinical applications in the near future.


Asunto(s)
Electroencefalografía , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Encéfalo/fisiología , Cuero Cabelludo
3.
Neural Plast ; 2020: 8869526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381164

RESUMEN

Recent evidence indicates that soluble amyloid-ß (Aß) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aß species (Aß 25-35 and Aß 1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aß microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aß intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aß microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aß species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Ondas Encefálicas/efectos de los fármacos , Región CA1 Hipocampal/diagnóstico por imagen , Región CA3 Hipocampal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Sinapsis/efectos de los fármacos , Animales , Estimulación Eléctrica , Masculino , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos
4.
Brain ; 139(Pt 12): 3084-3091, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27797807

RESUMEN

Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications.


Asunto(s)
Electrocorticografía/métodos , Retroalimentación Sensorial/fisiología , Lóbulo Frontal/fisiología , Ritmo Gamma/fisiología , Neurorretroalimentación/métodos , Lóbulo Temporal/fisiología , Adulto , Electrodos Implantados , Epilepsia/fisiopatología , Epilepsia/cirugía , Humanos
5.
Eur J Neurosci ; 41(10): 1345-55, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25847620

RESUMEN

Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.


Asunto(s)
Región CA3 Hipocampal/patología , Región CA3 Hipocampal/fisiopatología , Colesterol/toxicidad , Epilepsia/patología , Células Piramidales/patología , Células Piramidales/fisiología , Animales , Astrocitos/metabolismo , Región CA3 Hipocampal/metabolismo , Muerte Celular , Colesterol/metabolismo , Colesterol 24-Hidroxilasa , Dependovirus/fisiología , Electroencefalografía , Epilepsia/etiología , Femenino , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Fosforilación , Células Piramidales/metabolismo , ARN Interferente Pequeño/genética , Esclerosis , Esteroide Hidroxilasas/farmacología , Proteínas tau/metabolismo
6.
PLoS Comput Biol ; 9(3): e1002985, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555220

RESUMEN

Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical (SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal avalanches--spatiotemporal waves of enhanced activity--from dense intracranial depth recordings in humans. We showed that avalanche distributions closely follow a power law--the hallmark feature of SOC--for each vigilance state. However, avalanches clearly differ with vigilance states: slow wave sleep (SWS) shows large avalanches, wakefulness intermediate, and rapid eye movement (REM) sleep small ones. Our SOC model, together with the data, suggested first that the differences are mediated by global but tiny changes in synaptic strength, and second, that the changes with vigilance states reflect small deviations from criticality to the subcritical regime, implying that the human brain does not operate at criticality proper but close to SOC. Independent of criticality, the analysis confirms that SWS shows increased correlations between cortical areas, and reveals that REM sleep shows more fragmented cortical dynamics.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Modelos Neurológicos , Neuronas/fisiología , Fases del Sueño/fisiología , Vigilia/fisiología , Adulto , Biología Computacional , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Front Neurosci ; 18: 1441897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319310

RESUMEN

Introduction: Wearable in-ear electroencephalographic (EEG) devices hold significant promise for integrating brain monitoring technologies into real-life applications. However, despite the introduction of various in-ear EEG systems, there remains a necessity for validating these technologies against gold-standard, clinical-grade devices. This study aims to evaluate the signal quality of a newly developed mobile in-ear EEG device compared to a standard scalp EEG system among healthy volunteers during wakefulness and sleep. Methods: The study evaluated an in-ear EEG device equipped with dry electrodes in a laboratory setting, recording a single bipolar EEG channel using a cross-ear electrode configuration. Thirty healthy participants were recorded simultaneously using the in-ear EEG device and a conventional EEG cap system with 64 wet electrodes. Based on two recording protocols, one during a resting state condition involving alternating eye opening and closure with a low degree of artifact contamination and another consisting of a daytime nap, several quality measures were used for a quantitative comparison including root mean square (RMS) analysis, artifact quantification, similarities of relative spectral power (RSP), signal-to-noise ratio (SNR) based on alpha peak criteria, and cross-signal correlations of alpha activity during eyes-closed conditions and sleep activities. The statistical significance of our results was assessed through nonparametric permutation tests with False Discovery Rate (FDR) control. Results: During the resting state, in-ear and scalp EEG signals exhibited similar fluctuations, characterized by comparable RMS values. However, intermittent signal alterations were noticed in the in-ear recordings during nap sessions, attributed to movements of the head and facial muscles. Spectral analysis indicated similar patterns between in-ear and scalp EEG, showing prominent peaks in the alpha range (8-12 Hz) during rest and in the low-frequency range during naps (particularly in the theta range of 4-7 Hz). Analysis of alpha wave characteristics during eye closures revealed smaller alpha wave amplitudes and slightly lower signal-to-noise ratio (SNR) values in the in-ear EEG compared to scalp EEG. In around 80% of cases, cross-correlation analysis between in-ear and scalp signals, using a contralateral bipolar montage of 64 scalp electrodes, revealed significant correlations with scalp EEG (p < 0.01), particularly evident in the FT11-FT12 and T7-T8 electrode derivations. Conclusion: Our findings support the feasibility of using in-ear EEG devices with dry-contact electrodes for brain activity monitoring, compared to a standard scalp EEG, notably for wakefulness and sleep uses. Although marginal signal degradation is associated with head and facial muscle contractions, the in-ear device offers promising applications for long-term EEG recordings, particularly in scenarios requiring enhanced comfort and user-friendliness.

8.
Sci Rep ; 14(1): 23592, 2024 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384859

RESUMEN

Burn patients often face elevated pain, anxiety, and depression levels. Music therapy adds to integrative care in burn patients, but research including electrophysiological measures is limited. This study reports electrophysiological signals analysis during Music-Assisted Relaxation (MAR) with burn patients in the Intensive Care Unit (ICU). This study is a sub-analysis of an ongoing trial of music therapy with burn patients in the ICU. Electroencephalogram (EEG), electrocardiogram (ECG), and electromyogram (EMG) were recorded during MAR with nine burn patients. Additionally, background pain levels (VAS) and anxiety and depression levels (HADS) were assessed. EEG oscillation power showed statistically significant changes in the delta (p < 0.05), theta (p = 0.01), beta (p < 0.05), and alpha (p = 0.05) bands during music therapy. Heart rate variability tachograms high-frequencies increased (p = 0.014), and low-frequencies decreased (p = 0.046). Facial EMG mean frequency decreased (p = 0.01). VAS and HADS scores decreased - 0.76 (p = 0.4) and - 3.375 points (p = 0.37) respectively. Our results indicate parasympathetic system activity, attention shifts, reduced muscle tone, and a relaxed state of mind during MAR. This hints at potential mechanisms of music therapy but needs to be confirmed in larger studies. Electrophysiological changes during music therapy highlight its clinical relevance as a complementary treatment for ICU burn patients.Trial registration: Clinicaltrials.gov (NCT04571255). Registered September 24th, 2020. https//classic.clinicaltrials.gov/ct2/show/NCT04571255.


Asunto(s)
Quemaduras , Electroencefalografía , Electromiografía , Unidades de Cuidados Intensivos , Musicoterapia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ansiedad/terapia , Quemaduras/terapia , Quemaduras/fisiopatología , Electrocardiografía , Frecuencia Cardíaca/fisiología , Musicoterapia/métodos , Terapia por Relajación/métodos
9.
J Intensive Med ; 4(4): 515-525, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39310061

RESUMEN

Background: Elevated anxiety levels are common in patients on mechanical ventilation (MV) and may challenge recovery. Research suggests music-based interventions may reduce anxiety during MV. However, studies investigating specific music therapy techniques, addressing psychological and physiological well-being in patients on MV, are scarce. Methods: This three-arm randomized clinical pilot study was conducted with MV patients admitted to the intensive care unit (ICU) of Hospital San José in Bogotá, Colombia between March 7, 2022, and July 11, 2022. Patients were divided into three groups: intervention group 1 (IG1), music-assisted relaxation; intervention group 2 (IG2), patient-preferred therapeutic music listening; and control group (CG), standard care. The main outcome measure was the 6-item State-Anxiety Inventory. Secondary outcomes were: pain (measured with a visual analog scale), resilience (measured with the Brief Resilience Scale), agitation/sedation (measured with the Richmond Agitation-Sedation Scale), vital signs (including heart rate, blood pressure, oxygen saturation, and respiratory rate), days of MV, extubation success, and days in the ICU. Additionally, three patients underwent electroencephalography during the interventions. Results: Data from 23 patients were analyzed in this study. The age range of the patients was 24.0-84.0 years, with a median age of 66.0 years (interquartile range: 57.0-74.0). Of the 23 patients, 19 were female (82.6%). No statistically significant differences between the groups were observed for anxiety (P=0.330), pain (P=0.624), resilience (P=0.916), agitation/sedation (P=0.273), length of ICU stay (P=0.785), or vital signs. A statistically significant difference between the groups was found for days of MV (P=0.019). Electroencephalography measurements showed a trend toward delta and theta band power decrease for two patients and a power increase on both beta frequencies (slow and fast) in the frontal areas of the brain for one patient. Conclusions: In this pilot study, music therapy did not significantly affect the anxiety levels in patients on MV. However, the interventions were widely accepted by the staff, patients, and caregivers and were safe, considering the critical medical status of the participants. Further large-scale randomized controlled trials are needed to investigate the potential benefits of music therapeutic interventions in this population.Trial Registration ISRCTN trial registry identifier: ISRCTN16964680.

10.
Brain Inform ; 10(1): 12, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37155028

RESUMEN

In order to understand the link between brain functional states and behavioral/cognitive processes, the information carried in neural oscillations can be retrieved using different analytic techniques. Processing these different bio-signals is a complex, time-consuming, and often non-automatized process that requires customization, due to the type of signal acquired, acquisition method implemented, and the objectives of each individual research group. To this end, a new graphical user interface (GUI), named BOARD-FTD-PACC, was developed and designed to facilitate the visualization, quantification, and analysis of neurophysiological recordings. BOARD-FTD-PACC provides different and customizable tools that facilitate the task of analyzing post-synaptic activity and complex neural oscillatory data, mainly cross-frequency analysis. It is a flexible and user-friendly software that can be used by a wide range of users to extract valuable information from neurophysiological signals such as phase-amplitude coupling and relative power spectral density, among others. BOARD-FTD-PACC allows researchers to select, in the same open-source GUI, different approaches and techniques that will help promote a better understanding of synaptic and oscillatory activity in specific brain structures with or without stimulation.

11.
Sleep ; 46(6)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37039660

RESUMEN

Closed-loop acoustic stimulation (CLAS) during sleep has shown to boost slow wave (SW) amplitude and spindle power. Moreover, sleep SW have been classified based on different processes of neuronal synchronization. Thus, different types of SW events may have distinct functional roles and be differentially affected by external stimuli. However, the SW synchronization processes affected by CLAS are not well understood. Here, we studied the effect of CLAS on the dissociation of SW events based on two features of neuronal synchronization in the electroencephalogram (topological spread and wave slope). We evaluated and classified individual SW events of 14 healthy subjects during a CLAS stimulated (STM) and a control night (CNT). Three main categories of SW events were found denoting (C1) steep slope SW with global spread, (C2) flat-slope waves with localized spread and homeostatic decline, and (C3) multipeaked flat-slope events with global spread. Comparing between conditions, we found a consistent increase of event proportion and trough amplitudes for C1 events during the time of stimulation. Furthermore, we found similar increases in post-stimulus spectral power in θ, ß, and σ frequencies for CNT vs STIM condition independently of sleep stage or SW categories. However, topological analysis showed differentiated spatial dynamics in N2 and N3 for SW categories and the co-occurrence with spindle events. Our findings support the existence of multiple types of SW with differential response to external stimuli and possible distinct neuronal mechanisms.


Asunto(s)
Fases del Sueño , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Fases del Sueño/fisiología , Electroencefalografía , Voluntarios Sanos
12.
Epilepsia ; 53(9): 1669-76, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22738131

RESUMEN

From the very beginning the seizure prediction community faced problems concerning evaluation, standardization, and reproducibility of its studies. One of the main reasons for these shortcomings was the lack of access to high-quality long-term electroencephalography (EEG) data. In this article we present the EPILEPSIAE database, which was made publicly available in 2012. We illustrate its content and scope. The EPILEPSIAE database provides long-term EEG recordings of 275 patients as well as extensive metadata and standardized annotation of the data sets. It will adhere to the current standards in the field of prediction and facilitate reproducibility and comparison of those studies. Beyond seizure prediction, it may also be of considerable benefit for studies focusing on seizure detection, basic neurophysiology, and other fields.


Asunto(s)
Bases de Datos Factuales , Electroencefalografía , Epilepsia/epidemiología , Epilepsia/fisiopatología , Adolescente , Adulto , Anciano , Niño , Preescolar , Epilepsia/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Brain Commun ; 4(5): fcac183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483575

RESUMEN

Presurgical evaluation of mesial temporal and neocortical focal pharmacoresistant epilepsy patients using intracranial EEG recordings has led to the generation of extensive data on interictal epileptiform discharges, located within or remotely from seizure onset zones. In this study, we used this data to investigate how interictal epileptiform discharges are modulated and how their spatial distribution changes during wake and sleep and analysed the relationship between these discharge events and seizure onset zones. Preoperative evaluation data from 11 adult patients with focal pharmacoresistant epilepsy were extracted from the Epilepsiae database. Interictal epileptiform discharges were automatically detected during wakefulness and over several hours of continuous seizure-free sleep (total duration of EEG recordings:106.7 h; mean per patient: 9.7 h), and analysed across four brain areas (mesial temporal, lateral neocortical, basal cortical and the temporal pole). Sleep stages were classified manually from scalp EEG. Discharge events were characterized according to their rate and morphology (amplitude, sharpness and duration). Eight patients had a seizure onset zone over mesial areas and three patients over lateral neocortical areas. Overall, discharge rates varied across brain areas during wakefulness and sleep [wake/sleep stages × brain areas interaction; Wald χ 2(df = 6) = 31.1, P < 0.0001]. N2-N3 non-rapid eye movement sleep increased interictal epileptiform discharges in mesial areas compared with wakefulness and rapid eye movement sleep (P < 0.0001), and to other areas (P < 0.0001 for all comparisons). This mesial pattern was observed both within and outside of seizure onset zones. During wakefulness, the rate of interictal epileptiform discharges was significantly higher than during N2-N3 non-rapid eye movement sleep (P = 0.04), and rapid eye movement sleep (P = 0.01) in lateral neocortical areas (referred to as lateral neocortical pattern), a finding that was more pronounced in seizures onset zones (P = 0.004). The morphological characteristics of the discharge events were modulated during wakefulness and sleep stages across brain areas. The effect of seizure onset zones on discharge morphology was conditioned by brain area and was particularly marked in temporal pole areas. Our analysis of discharge patterns in relation to cerebral localization, vigilance state and the anatomical affiliation of seizure onset zones revealed the global and local aspects of the complex relationship between interictal discharges, sleep and seizure onset zones. This novel approach may lead to a better understanding of cognitive decline and responses to therapy, as well as to adaptation of surgical interventions for epileptic patients.

14.
Burns ; 48(3): 510-521, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34906387

RESUMEN

BACKGROUND: Pain is one of the most common and most difficult symptoms to manage in adult burn patients in the Intensive Care Unit (ICU). Insufficient or unsuccessful pain management can negatively affect physiological, psychological, and social health in burn patients, both during and after hospitalization. Music therapy and music medicine interventions have been shown to positively affect pain and mental health in this population. This systematic review and meta-analysis provide an update of Randomized Controlled Trials (RCTs) using music therapy or music medicine interventions in adult burn patients. METHODS: A variety of databases were searched from their beginning to June 2020, including PsycINFO and PsycArticles (via APAsycNET), PubMed and MEDLINE (via OvidSP), Scopus, Web of Science, and the Cochrane Library. Data of all articles meeting the inclusion criteria were extracted, organized, and processed according to the PRISMA guidelines. Statistical analysis was performed using Q-test and I2 statistics. RESULTS: 10 RCTs with a total of 1061 participants were included. The results of the meta-analysis showed a statistically significant reduction of pain (I2 = 96.03%, P < 0.001), anxiety (I2 = 98.85%, P < 0.002), and improved relaxation (I2 = 87.19%, P < 0.001) favoring music interventions compared to control groups. CONCLUSIONS: This review provides preliminary evidence for the effectiveness of music interventions for adult burn patients. However, more high-quality RCTs are needed to safely establish guidelines for music therapists and other health care professionals in using music for health purposes with this population.


Asunto(s)
Quemaduras , Musicoterapia , Música , Adulto , Ansiedad/terapia , Quemaduras/complicaciones , Quemaduras/terapia , Humanos , Música/psicología , Musicoterapia/métodos , Dolor/etiología
15.
J Neurosci ; 30(23): 7770-82, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20534826

RESUMEN

Gamma oscillations (40-120 Hz), usually associated with waking functions, can be recorded in the deepest stages of sleep in animals. The full details of their large-scale coordination across multiple cortical networks are still unknown. Furthermore, it is not known whether oscillations with similar characteristics are also present in the human brain. In this study, we examined the existence of gamma oscillations during polysomnographically defined sleep-wake states using large-scale microelectrode recordings (up to 56 channels), with single-cell and spike-time precision, in epilepsy patients. We report that low (40-80 Hz) and high (80-120 Hz) gamma oscillations recurrently emerged over time windows of several hundreds of milliseconds in all investigated cortical areas during slow-wave sleep. These patterns were correlated with positive peaks of EEG slow oscillations and marked increases in local cellular discharges, suggesting that they were associated with cortical UP states. These gamma oscillations frequently appeared at approximately the same time in many different cortical areas, including homotopic regions, forming large spatial patterns. Coincident firings with millisecond precision were strongly enhanced during gamma oscillations but only between cells within the same cortical area. Furthermore, in a significant number of cases, cortical gamma oscillations tended to occur within 100 ms after hippocampal ripple/sharp wave complexes. These data confirm and extend earlier animal studies reporting that gamma oscillations are transiently expressed during UP states during sleep. We speculate that these high-frequency patterns briefly restore "microwake" activity and are important for consolidation of memory traces acquired during previous awake periods.


Asunto(s)
Corteza Cerebral/fisiopatología , Electroencefalografía , Epilepsia/fisiopatología , Potenciales Evocados , Polisomnografía/métodos , Sueño , Adulto , Mapeo Encefálico/métodos , Electrodos Implantados , Femenino , Hipocampo/fisiopatología , Humanos , Masculino , Microelectrodos
16.
Front Psychiatry ; 12: 714209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733185

RESUMEN

Background: Burn patients experience major physiological and psychological stressors during treatment and rehabilitation, including elevated levels of pain, anxiety, stress, or depression. Music interventions inclusive of music therapy (MT) have been shown to improve such symptoms, but rigorous clinical trials investigating specific music therapy methods in adult burn patients are scarce. Methods: This is a single center Randomized Controlled Trial (RCT) protocol with two parallel arms. Participants are 81 adult burn patients admitted to the Intensive Care Unit (ICU) of the University Hospital Fundación Santa Fe de Bogotá in Colombia. The intervention consists of a Music Assisted Relaxation (MAR) protocol, a music therapy technique composed of entrained live music combined with a guided relaxation and/or the use of imagery. The effects of the MAR will be compared to a control group (treatment as usual) over a period of maximum 2 weeks or six interventions. The primary outcome measure is perceived background pain, as measured with a Visual Analog Scale (VAS) before and after each intervention. Secondary outcomes are anxiety and depression levels; vital signs; and the use of pain medication. Additionally, some patients in the intervention group will be invited to participate in electroencephalography, electromyography, and electrocardiography recordings during the MAR. Discussion: This study protocol follows the SPIRIT guidelines for defining items of clinical trials and is the first study in Colombia to evaluate the effects of music therapy for adult burn patients. With this RCT it is hoped to gather new knowledge about the potential of music therapy to help critical care patients cope and recover from their injuries during the hospitalization in the ICU. Trial registration: www.clinicaltrials.gov, Identifier: NCT04571255. Protocol version: V1.0, May 24th 2021.

17.
Neurosci Res ; 156: 271-278, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32201357

RESUMEN

Oscillations of neural excitability shape sensory, motor or cognitive processes. Furthermore, a large body of research demonstrates that intrinsic oscillations are entrained by external rhythms, allowing a simple and efficient way to enhance human brain functions. As an external stimulation source, repeating acoustic stimuli have been shown to provide a possible pacing signal for modulating the electrical activity recorded by the electroencephalogram (EEG). In this review, we discuss recent advances in understanding how rhythmic auditory stimulation can selectively modulate EEG oscillations. Despite growing evidence, recent evidence suggests that standard methods of data analysis are often insufficient for a definite proof of entrainment in some instances. In particular, we stressed that the complexity of the elicited modulations, often varying in phase and frequency on a short timescale, requires time-frequency measures that are better appropriate to analyze driven brain phenomena. Once entrainment is clearly established, one can assess the specificity of its expression, thus providing a better understanding of the physiology underlying brain modulation and a faster translation to treatment programs in various psychopathologic conditions.


Asunto(s)
Encéfalo , Electroencefalografía , Estimulación Acústica , Percepción Auditiva , Humanos
18.
Sleep ; 43(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31872860

RESUMEN

STUDY OBJECTIVES: Closed-loop auditory stimulation (CLAS) is a method for enhancing slow oscillations (SOs) through the presentation of auditory clicks during sleep. CLAS boosts SOs amplitude and sleep spindle power, but the optimal timing for click delivery remains unclear. Here, we determine the optimal time to present auditory clicks to maximize the enhancement of SO amplitude and spindle likelihood. METHODS: We examined the main factors predicting SO amplitude and sleep spindles in a dataset of 21 young and 17 older subjects. The participants received CLAS during slow-wave-sleep in two experimental conditions: sham and auditory stimulation. Post-stimulus SOs and spindles were evaluated according to the click phase on the SOs and compared between and within conditions. RESULTS: We revealed that auditory clicks applied anywhere on the positive portion of the SO increased SO amplitudes and spindle likelihood, although the interval of opportunity was shorter in the older group. For both groups, analyses showed that the optimal timing for click delivery is close to the SO peak phase. Click phase on the SO wave was the main factor determining the impact of auditory stimulation on spindle likelihood for young subjects, whereas for older participants, the temporal lag since the last spindle was a better predictor of spindle likelihood. CONCLUSIONS: Our data suggest that CLAS can more effectively boost SOs during specific phase windows, and these differ between young and older participants. It is possible that this is due to the fluctuation of sensory inputs modulated by the thalamocortical networks during the SO.


Asunto(s)
Sueño de Onda Lenta , Estimulación Acústica , Anciano , Electroencefalografía , Humanos , Sueño , Adulto Joven
19.
Sci Rep ; 10(1): 21833, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311533

RESUMEN

Seizure detection is a routine process in epilepsy units requiring manual intervention of well-trained specialists. This process could be extensive, inefficient and time-consuming, especially for long term recordings. We proposed an automatic method to detect epileptic seizures using an imaged-EEG representation of brain signals. To accomplish this, we analyzed EEG signals from two different datasets: the CHB-MIT Scalp EEG database and the EPILEPSIAE project that includes scalp and intracranial recordings. We used fully convolutional neural networks to automatically detect seizures. For our best model, we reached average accuracy and specificity values of 99.3% and 99.6%, respectively, for the CHB-MIT dataset, and corresponding values of 98.0% and 98.3% for the EPILEPSIAE patients. For these patients, the inclusion of intracranial electrodes together with scalp ones increased the average accuracy and specificity values to 99.6% and 58.3%, respectively. Regarding the other metrics, our best model reached average precision of 62.7%, recall of 58.3%, F-measure of 59.0% and AP of 54.5% on the CHB-MIT recordings, and comparatively lowers performances for the EPILEPSIAE dataset. For both databases, the number of false alarms per hour reached values less than 0.5/h for 92% of the CHB-MIT patients and less than 1.0/h for 80% of the EPILEPSIAE patients. Compared to recent studies, our lightweight approach does not need any estimation of pre-selected features and demonstrates high performances with promising possibilities for the introduction of such automatic methods in the clinical practice.


Asunto(s)
Algoritmos , Bases de Datos Factuales , Electroencefalografía , Epilepsia , Redes Neurales de la Computación , Adolescente , Niño , Preescolar , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Humanos , Masculino
20.
Sci Rep ; 10(1): 5760, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238840

RESUMEN

Pregnancy and puerperium are typified by marked biobehavioral changes. These changes, which are traceable in both mothers and fathers, play an important role in parenthood and may modulate social cognition abilities. However, the latter effects remain notably unexplored in parents of newborns (PNs). To bridge this gap, we assessed empathy and social emotions (envy and Schadenfreude) in 55 PNs and 60 controls (childless healthy participants without a romantic relationship or sexual intercourse in the previous 48 hours). We used facial electromyography to detect physiological signatures of social emotion processing. Results revealed higher levels of affective empathy and Schadenfreude in PNs, the latter pattern being accompanied by increased activity of the corrugator suppercilii region. These effects were not explained by potential confounding variables (educational level, executive functioning, depression, stress levels, hours of sleep). Our novel findings suggest that PNs might show social cognition changes crucial for parental bonding and newborn care.


Asunto(s)
Relaciones Padres-Hijo , Periodo Posparto/psicología , Adulto , Emociones , Empatía , Femenino , Humanos , Recién Nacido , Celos , Masculino , Padres , Conducta Social , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA