Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Virol ; 90(8): 4215-4231, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865709

RESUMEN

UNLABELLED: Adeno-associated viruses (AAVs) currently are being developed to efficiently transduce the retina following noninvasive, intravitreal (Ivt) injection. However, a major barrier encountered by intravitreally delivered AAVs is the inner limiting membrane (ILM), a basement membrane rich in heparan sulfate (HS) proteoglycan. The goal of this study was to determine the impact of HS binding on retinal transduction by Ivt-delivered AAVs. The heparin affinities of AAV2-based tyrosine-to-phenylalanine (Y-F) and threonine-to-valine (T-V) capsid mutants, designed to avoid proteasomal degradation during cellular trafficking, were established. In addition, the impact of grafting HS binding residues onto AAV1, AAV5, and AAV8(Y733F) as well as ablation of HS binding by AAV2-based vectors on retinal transduction was investigated. Finally, the potential relationship between thermal stability of AAV2-based capsids and Ivt-mediated transduction was explored. The results show that the Y-F and T-V AAV2 capsid mutants bind heparin but with slightly reduced affinity relative to that of AAV2. The grafting of HS binding increased Ivt transduction by AAV1 but not by AAV5 or AAV8(Y733F). The substitution of any canonical HS binding residues ablated Ivt-mediated transduction by AAV2-based vectors. However, these same HS variant vectors displayed efficient retinal transduction when delivered subretinally. Notably, a variant devoid of canonical HS binding residues, AAV2(4pMut)ΔHS, was remarkably efficient at transducing photoreceptors. The disparate AAV phenotypes indicate that HS binding, while critical for AAV2-based vectors, is not the sole determinant for transduction via the Ivt route. Finally, Y-F and T-V mutations alter capsid stability, with a potential relationship existing between stability and improvements in retinal transduction by Ivt injection. IMPORTANCE: AAV has emerged as the vector of choice for gene delivery to the retina, with attention focused on developing vectors that can mediate transduction following noninvasive, intravitreal injection. HS binding has been postulated to play a role in intravitreally mediated transduction of retina. Our evaluation of the HS binding of AAV2-based variants and other AAV serotype vectors and the correlation of this property with transduction points to HS affinity as a factor controlling retinal transduction following Ivt delivery. However, HS binding is not the only requirement for improved Ivt-mediated transduction. We show that AAV2-based vectors lacking heparin binding transduce retina by subretinal injection and display a remarkable ability to transduce photoreceptors, indicating that other receptors are involved in this phenotype.


Asunto(s)
Dependovirus/fisiología , Vectores Genéticos , Heparitina Sulfato/farmacología , Retina/metabolismo , Transducción Genética , Animales , Cápside/metabolismo , Dependovirus/efectos de los fármacos , Dependovirus/genética , Vectores Genéticos/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inyecciones Intraoculares , Inyecciones Intravenosas , Hígado/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Virus Reordenados/efectos de los fármacos , Virus Reordenados/genética , Virus Reordenados/fisiología , Cuerpo Vítreo/metabolismo
2.
J Struct Biol ; 192(1): 21-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26334681

RESUMEN

Adeno-associated virus rhesus isolate 8 (AAVrh.8) is a leading vector for the treatment of neurological diseases due to its efficient transduction of neuronal cells and reduced peripheral tissue tropism. Toward identification of the capsid determinants for these properties, the structure of AAVrh.8 was determined by X-ray crystallography to 3.5 Å resolution and compared to those of other AAV isolates. The capsid viral protein (VP) structure consists of an αA helix and an eight-stranded anti-parallel ß-barrel core conserved in parvoviruses, and large insertion loop regions between the ß-strands form the capsid surface topology. The AAVrh.8 capsid exhibits the surface topology conserved in all AAVs: depressions at the icosahedral twofold axis and surrounding the cylindrical channel at the fivefold axis, and three protrusions around the threefold axis. A structural comparison to serotypes AAV2, AAV8, and AAV9, to which AAVrh.8 shares ∼ 84%, ∼ 91%, and ∼ 87% VP sequence identity, respectively, revealed differences in the surface loops known to affect receptor binding, transduction efficiency, and antigenicity. Consistent with this observation, biochemical assays showed that AAVrh.8 is unable to bind heparin and does not cross-react with conformational monoclonal antibodies and human donor serum directed against the other AAVs compared. This structure of AAVrh.8 thus identified capsid surface differences which can serve as template regions for rational design of vectors with enhanced transduction for specific tissues and escape pre-existing antibody recognition. These features are essential for the creation of an AAV vector toolkit that is amenable to personalized disease treatment.


Asunto(s)
Proteínas de la Cápside/química , Dependovirus/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de la Cápside/ultraestructura , Cristalografía por Rayos X , Vectores Genéticos/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Virión/ultraestructura
3.
Mol Ther ; 22(9): 1625-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24925207

RESUMEN

Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34(+) hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34(+) human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34(+) cells. Every AAV isolated from CD34(+) cells mapped to AAV Clade F. Gene transfer vectors derived from these novel AAVs efficiently underwent entry and postentry processing in human cord blood stem cells and supported stable gene transfer into long-term, in vivo engrafting human HSCs significantly better than other serotypes. AAVHSC-transduced human CD34(+) cells engrafted in vivo and gave rise to differentiated transgene-expressing progeny. Importantly, gene-marked CD34(+) stem cells persisted long term in xenograft recipients, indicating transduction of primitive progenitors. Notably, correlation of structure with function permitted identification of potential capsid components important for HSC transduction. Thus, AAVHSCs represent a new class of genetic vectors for the manipulation of HSC genomes.


Asunto(s)
Antígenos CD34/metabolismo , Dependovirus/fisiología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/virología , Animales , Proteínas de la Cápside/metabolismo , Células Cultivadas , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/inmunología , Humanos , Masculino , Ratones , Ratones SCID , Modelos Biológicos , Filogenia , Transducción Genética
4.
J Struct Biol ; 186(2): 308-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24704217

RESUMEN

The Adeno-associated viruses (AAVs) are being developed as gene delivery vectors for therapeutic clinical applications. However, the host antibody immune response directed against their capsid, prevalent in ∼40-70% of the general population, depending on serotype, negatively impacts efficacy. AAVrh32.33, a novel vector developed from rhesus macaques isolates, has significantly lower seroprevalence in human populations compared to AAV2 and AAV8, which are both in clinical use. To better understand the capsid determinants of this differential immune response to AAVrh32.33, its structure was determined by X-ray crystallography to 3.5 Å resolution. The capsid viral protein (VP) structure conserves the eight-stranded ß-barrel core and αA helix reported for other parvoviruses and the distinct capsid surface topology of the AAVs: a depression at the icosahedral twofold axis, three protrusions surrounding the threefold axis, and a depression surround a cylindrical channel at the fivefold axis. A comparison to AAV2, AAV4, and AAV8, to which AAVrh32.33 shares ∼61%, ∼81%, and ∼63% identity, respectively, identified differences in previously defined AAV VP structurally variable regions (VR-1 to VR-IX) which function as receptor attachment, transduction efficiency, and/or antigenic determinants. This structure thus provides a 3D platform for capsid engineering in ongoing efforts to develop AAVrh32.33, as well as other AAV serotypes, for tissue targeted gene-therapy applications with vectors that can evade pre-existing antibody responses against the capsid. These features are required for full clinical realization of the promising AAV gene delivery system.


Asunto(s)
Cápside/ultraestructura , Dependovirus/química , Técnicas de Transferencia de Gen , Vectores Genéticos/química , Modelos Moleculares , Secuencia de Aminoácidos , Cristalografía por Rayos X , Vectores Genéticos/genética , Vectores Genéticos/ultraestructura , Humanos , Datos de Secuencia Molecular , Conformación Proteica
5.
J Virol ; 87(17): 9473-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23720715

RESUMEN

Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8(+) T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33.


Asunto(s)
Dependovirus/inmunología , Macaca mulatta/virología , Linfocitos T/inmunología , Linfocitos T/virología , Secuencia de Aminoácidos , Animales , Cápside/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Dependovirus/clasificación , Dependovirus/genética , Mapeo Epitopo , Hibridación Genética , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Serotipificación
6.
J Virol ; 86(13): 7326-33, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22514350

RESUMEN

Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Galactosa/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetinae , Dependovirus/fisiología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Acoplamiento Viral
7.
J Virol ; 86(12): 6947-58, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496238

RESUMEN

Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, ß-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less "pointed" than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.


Asunto(s)
Cápside/química , Dependovirus/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dependovirus/clasificación , Dependovirus/genética , Dependovirus/metabolismo , Imagenología Tridimensional
8.
Viruses ; 12(6)2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575696

RESUMEN

Adeno-associated viruses (AAVs) are small, non-pathogenic ssDNA viruses being used as therapeutic gene delivery vectors for the treatment of a variety of monogenic diseases. An obstacle to successful gene delivery is inefficient capsid trafficking through the endo/lysosomal pathway. This study aimed to characterize the AAV capsid stability and dynamics associated with this process for a select number of AAV serotypes, AAV1, AAV2, AAV5, and AAV8, at pHs representative of the early and late endosome, and the lysosome (6.0, 5.5, and 4.0, respectively). All AAV serotypes displayed thermal melt temperatures that varied with pH. The stability of AAV1, AAV2, and AAV8 increased in response to acidic conditions and then decreased at pH 4.0. In contrast, AAV5 demonstrated a consistent decrease in thermostability in response to acidification. Negative-stain EM visualization of liposomes in the presence of capsids at pH 5.5 or when heat shocked showed induced remodeling consistent with the externalization of the PLA2 domain of VP1u. These observations provide clues to the AAV capsid dynamics that facilitate successful infection. Finally, transduction assays revealed a pH and temperature dependence with low acidity and temperatures > 4 °C as detrimental factors.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Dependovirus/metabolismo , Lisosomas/metabolismo , Transducción Genética , Animales , Transporte Biológico/fisiología , Línea Celular , Frío , Terapia Genética/métodos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Células Sf9 , Spodoptera
9.
Methods Mol Biol ; 437: 51-91, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18369962

RESUMEN

Adeno-associated virus (AAV) is one of the most promising viral gene transfer vectors that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The surface of the AAV capsid is an essential component that is involved in cell binding, internalization, and trafficking within the targeted cell. Prior to developing a gene therapy strategy that utilizes AAV, the serotype should be carefully considered since each capsid exhibits a unique tissue tropism and transduction efficiency. Several approaches have been undertaken in an effort to target AAV vectors to specific cell types, including utilizing natural serotypes that target a desired cellular receptor, producing pseudotyped vectors, and engineering chimeric and mosaic AAV capsids. These capsid modifications are being incorporated into vector production and purification methods that provide for the ability to scale-up the manufacturing process to support human clinical trials. Protocols for small-scale and large-scale production of AAV, as well as assays to characterize the final vector product, are presented here. The structures of AAV2, AAV4, and AAV5 have been solved by X-ray crystallography or cryo-electron microscopy (cryo-EM), and provide a basis for rational vector design in developing customized capsids for specific targeting of AAV vectors. The capsid of AAV has been shown to be remarkably stable, which is a desirable characteristic for a gene therapy vector; however, recently it has been shown that the AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentation pattern when exposed to various proteases, as well as the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each serotype that can be used for capsid identity validation. In addition to serotype identification, protease susceptibility can also be utilized to study dynamic structural changes that must occur for the AAV capsid to perform its various functions during the virus life cycle. The use of proteases for structural studies in solution complements the crystal structural studies of the virus. A generic protocol based on proteolysis for AAV serotype identification is provided here.


Asunto(s)
Cápside/química , Dependovirus/química , Técnicas de Transferencia de Gen , Vectores Genéticos/química , Animales , Dependovirus/genética , Humanos
10.
Mol Ther Methods Clin Dev ; 9: 234-246, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29766031

RESUMEN

Adeno-associated virus (AAV) has provided the gene therapy field with the most powerful in vivo gene delivery vector to realize safe, efficacious, and sustainable therapeutic gene expression. Because many clinically relevant properties of AAV-based vectors are governed by the capsid, much research effort has been devoted to the development of AAV capsids for desired features. Here, we combine AAV capsid discovery from nature and rational engineering to report an AAV9 capsid variant, designated as AAV9.HR, which retains AAV9's capability to traverse the blood-brain barrier and transduce neurons. This variant shows reduced transduction in peripheral tissues when delivered through intravascular (IV) injection into neonatal mice. Therefore, when IV AAV delivery is used to treat CNS diseases, AAV9.HR has the advantage of mitigating potential off-target effects in peripheral tissues compared to AAV9. We also demonstrate that AAV9.HR is suitable for peripheral tissue-detargeted CNS-directed gene therapy in a mouse model of a fatal pediatric leukodystrophy. In light of recent success with profiling diversified natural AAV capsid repertoires and the understanding of AAV capsid sequence-structure-function relationship, such a combinatory approach to AAV capsid development is expected to further improve vector targeting and expand the vector toolbox for therapeutic gene delivery.

11.
J Microbiol Biol Educ ; 17(1): 13-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27047582

RESUMEN

The Internet and smart phone technologies have opened up new avenues for collaboration among scientists around the world. These technologies have also expanded citizen science opportunities and public participation in scientific research (PPSR). Here we discuss citizen science, what it is, who does it, and the variety of projects and methods used to increase scientific knowledge and scientific literacy. We describe a number of different types of citizen-science projects. These greatly increase the number of people involved, helping to speed the pace of data analysis and allowing science to advance more rapidly. As a result of the numerous advantages of citizen-science projects, these opportunities are likely to expand in the future and increase the rate of novel discoveries.

12.
Hum Gene Ther Methods ; 26(6): 211-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26421998

RESUMEN

The ubiquitin-proteasome pathway plays a critical role in the intracellular trafficking of recombinant adeno-associated virus 2 (AAV2) vectors, which negatively impacts the transduction efficiency of these vectors. Because ubiquitination occurs on lysine (K) residues, we performed site-directed mutagenesis where we replaced each of 10 surface-exposed K residues (K258, K490, K507, K527, K532, K544, K549, K556, K665, and K706) with glutamic acid (E) because of similarity of size and lack of recognition by modifying enzymes. The transduction efficiency of K490E, K544E, K549E, and K556E scAAV2 vectors increased in HeLa cells in vitro up to 5-fold compared with wild-type (WT) AAV2 vectors, with the K556E mutant being the most efficient. Intravenous delivery of WT and K-mutant ssAAV2 vectors further corroborated these results in murine hepatocytes in vivo. Because AAV8 vectors transduce murine hepatocytes exceedingly well, and because some of the surface-exposed K residues are conserved between these serotypes, we generated and tested two single mutants (K547E and K569E), and one double-mutant (K547 + 569E) AAV8 vector. However, no significant increase in the transduction efficiency of any of these mutant AAV8 vectors was observed in murine hepatocytes in vivo. These studies suggest that although targeting the surface-exposed K residues is yet another strategy to improve the transduction efficiency of AAV vectors, phenotypic outcome is serotype specific.


Asunto(s)
Proteínas de la Cápside/genética , Dependovirus/clasificación , Dependovirus/genética , Vectores Genéticos/genética , Hepatocitos/metabolismo , Lisina , Mutagénesis Sitio-Dirigida , Transducción Genética , Animales , Proteínas de la Cápside/química , Línea Celular , Células Cultivadas , Expresión Génica , Genes Reporteros , Humanos , Ratones , Transgenes
13.
Mol Ther Methods Clin Dev ; 1: 14034, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26015974

RESUMEN

We describe a new rapid, low cost, and scalable method for purification of various recombinant adeno-associated viruses (rAAVs) from the lysates of producer cells of either mammalian or insect origin. The method takes advantage of two general biochemical properties of all characterized AAV serotypes: (i) low isoelectric point of a capsid and (ii) relative biological stability of the viral particle in the acidic environment. A simple and rapid clarification of cell lysate toremove the bulk of proteins and DNA is accomplished by utilizing inexpensive off-the-shelf reagents such as sodium citrate and citric acid. After the low-speed centrifugation step, the supernatant is subjected to cation exchange chromatography via sulfopropyl (SP) column. The eluted virus may then be further concentrated by either centrifugal spin devices or tangential flow filtration yielding material of high titer and Good Manufacturing Practice (GMP) grade biochemical purity. The protocol is validated for rAAV serotypes 2, 8, and 9. The described method makes rAAV vector technology readily available for the low budget research laboratories and could be easily adapted for a large scale GMP production format.

14.
ACS Nano ; 8(5): 4740-6, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24796495

RESUMEN

We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.


Asunto(s)
Dependovirus/química , Nanopartículas/química , Nanotecnología/métodos , Péptido Hidrolasas/química , Virus/química , Secuencia de Aminoácidos , Cápside/química , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Nanomedicina/métodos , Plásmidos/química , Ingeniería de Proteínas/métodos , Propiedades de Superficie , Temperatura , Transgenes
15.
PLoS One ; 8(3): e59142, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527116

RESUMEN

The ubiquitin-proteasome pathway plays a critical role in the intracellular trafficking of AAV2 vectors, and phosphorylation of certain surface-exposed amino acid residues on the capsid provides the primary signal for ubiquitination. Removal of several critical tyrosine (Y) and serine (S) residues on the AAV2 capsid has been shown to significantly increase transduction efficiency compared with the wild-type (WT) vectors. In the present study, site-directed mutagenesis of each of the 17 surface-exposed threonine (T) residues was conducted, and the transduction efficiency of four of these mutants, T455V, T491V, T550V, and T659V, was observed to increase up to 4-fold in human HEK293 cells in vitro. The most critical Y, S, and T mutations were subsequently combined, and the quadruple-mutant (Y444+500+730F+T491V) AAV2 vector was identified as the most efficient. This vector increased the transduction efficiency ∼24-fold over the WT AAV2 vector, and ∼2-3-fold over the previously described triple-mutant (Y444+500+730F) vector in a murine hepatocyte cell line, H2.35, in vitro. Similar results were obtained in murine hepatocytes in vivo following tail vein injection of the Y444+500+730F+T491V scAAV2 vector, and whole-body bioluminescence imaging of C57BL/6 mice. The increase in the transduction efficiency of the Y-T quadruple-mutant over that of the Y triple-mutant correlated with an improved nuclear translocation of the vectors, which exceeded 90%. These observations suggest that further optimization of the AAV2 capsid by targeting amino acid residues involved in phosphorylation may not be possible. This study has thus led to the generation of a novel Y444+500+730F+T491V quadruple-mutant AAV2 vector with potential for use in liver-directed human gene therapy.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos/genética , Sustitución de Aminoácidos , Animales , Transporte Biológico , Línea Celular , Núcleo Celular/metabolismo , Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Masculino , Ratones , Mutagénesis Sitio-Dirigida , Treonina , Transducción Genética , Transgenes
16.
PLoS One ; 8(9): e75142, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086458

RESUMEN

AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dependovirus/inmunología , Inmunidad Humoral/inmunología , Modelos Animales , Ovinos/inmunología , Animales , Cápside/ultraestructura , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Terapia Genética/métodos , Luciferasas , Pruebas de Neutralización
17.
PLoS One ; 8(4): e62097, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637972

RESUMEN

Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y) and threonine (T) residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F) and valine (V), respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice). Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS) by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary) AAV vectors containing the human rhodopsin kinase promoter (hGRK1) were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY-F+T-V) transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY-F+T-V) -hGRK1-GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus we have identified a novel AAV vector capable of transducing photoreceptors following intravitreal delivery to mouse. Furthermore, we describe a robust methodology for quantifying photoreceptor transduction from intravitreally delivered AAV vectors.


Asunto(s)
Cápside/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Mutación/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Animales , Línea Celular , Pollos , Dependovirus/fisiología , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Expresión Génica , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Regiones Promotoras Genéticas/genética , Serotipificación , Transducción Genética , Transgenes/genética , Tropismo Viral
18.
J Clin Invest ; 121(6): 2427-35, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21576824

RESUMEN

Vectors based on adeno-associated virus (AAV) serotype 9 are candidates for in vivo gene delivery to many organs, but the receptor(s) mediating these tropisms have yet to be defined. We evaluated AAV9 uptake by glycans with terminal sialic acids (SAs), a common mode of cellular entry for viruses. We found, however, that AAV9 binding increased when terminal SA was enzymatically removed, suggesting that galactose, which is the most commonly observed penultimate monosaccharide to SA, may mediate AAV9 transduction. This was confirmed in mutant CHO Pro-5 cells deficient in the enzymes involved in glycoprotein biogenesis, as well as lectin interference studies. Binding of AAV9 to glycans with terminal galactose was demonstrated via glycan binding assays. Co-instillation of AAV9 vector with neuraminidase into mouse lung resulted in exposure of terminal galactose on the apical surface of conducting airway epithelial cells, as shown by lectin binding and increased transduction of these cells, demonstrating the possible utility of this vector in lung-directed gene transfer. Increasing the abundance of the receptor on target cells and improving vector efficacy may improve delivery of AAV vectors to their therapeutic targets.


Asunto(s)
Dependovirus/genética , Galactosa/metabolismo , Terapia Genética/métodos , Vectores Genéticos/farmacocinética , Pulmón/metabolismo , Glicoproteínas de Membrana/metabolismo , Polisacáridos/metabolismo , Receptores Virales/metabolismo , Animales , Células CHO/efectos de los fármacos , Células CHO/metabolismo , Células CHO/virología , Cápside/metabolismo , Cricetinae , Cricetulus , Dependovirus/clasificación , Sistemas de Liberación de Medicamentos , Glicosilación , Pulmón/virología , Masculino , Glicoproteínas de Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuraminidasa/farmacología , Unión Proteica , Receptores Virales/efectos de los fármacos , Transducción Genética/métodos
19.
J Virol Methods ; 159(2): 167-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19447508

RESUMEN

Mass spectrometry (MS) has been utilized to address the need for a rapid and reliable assay to confirm the capsid serotype identity of recombinant AAV gene transfer vectors. The differences in the primary amino acid sequence of AAV serotypes generate a unique set of fragments with different masses upon proteolytic digestion, and by comparing the fragment masses against common and custom databases, reliable capsid serotype identification is achieved. Highly homologous serotypes, such as AAV1, AAV2, and AAV8, can be distinguished from each other, as well as from less homologous serotypes such as AAV4, and AAV5. Furthermore, analysis of the MS data for wild-type AAV4 compared to an AAV4 capsid with a single amino acid mutation demonstrates the sensitivity of the method and validates the relevance of the method in the context of retinal gene transfer. With an expanding repertoire of AAV serotypes, physicochemical methods for capsid analysis, such as MS, are highly desirable and do not require product-specific analytical reagents such as monoclonal antibodies. A MS-based capsid identity test is suitable for cGMP lot release testing of rAAV gene transfer products and will help ensure patient protection.


Asunto(s)
Proteínas de la Cápside/química , Dependovirus/química , Dependovirus/clasificación , Espectrometría de Masas/métodos , Línea Celular , Vectores Genéticos/clasificación , Humanos , Sensibilidad y Especificidad , Serotipificación
20.
Microbiol Mol Biol Rev ; 73(4): 730-49, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19946139

RESUMEN

Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.


Asunto(s)
Interacciones Huésped-Patógeno , Infecciones por Poxviridae/virología , Poxviridae , Proteómica , Animales , Genoma Viral , Humanos , Poxviridae/química , Poxviridae/genética , Poxviridae/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/química , Virión/genética , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA