Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Nature ; 590(7844): 151-156, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442055

RESUMEN

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Asunto(s)
Dolor Abdominal/inmunología , Dolor Abdominal/patología , Alérgenos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Alimentos/efectos adversos , Intestinos/inmunología , Síndrome del Colon Irritable/inmunología , Dolor Abdominal/etiología , Dolor Abdominal/microbiología , Adulto , Animales , Citrobacter rodentium/inmunología , Diarrea/inmunología , Diarrea/microbiología , Diarrea/patología , Infecciones por Enterobacteriaceae/complicaciones , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Femenino , Hipersensibilidad a los Alimentos/complicaciones , Hipersensibilidad a los Alimentos/microbiología , Hipersensibilidad a los Alimentos/patología , Glútenes/inmunología , Humanos , Inmunoglobulina E/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Intestinos/microbiología , Intestinos/patología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/patología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Leche/inmunología , Ovalbúmina/inmunología , Calidad de Vida , Receptores Histamínicos H1/metabolismo , Proteínas de Soja/inmunología , Triticum/inmunología
2.
Gastroenterology ; 166(6): 976-994, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325759

RESUMEN

Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.


Asunto(s)
Dolor Crónico , Dolor Visceral , Humanos , Dolor Visceral/fisiopatología , Dolor Visceral/terapia , Dolor Visceral/diagnóstico , Dolor Visceral/etiología , Dolor Crónico/terapia , Dolor Crónico/fisiopatología , Dolor Crónico/diagnóstico , Dolor Crónico/psicología , Animales , Calidad de Vida , Transducción de Señal
3.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G176-G186, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084411

RESUMEN

Abdominal pain is a cardinal symptom of inflammatory bowel disease (IBD). Transient receptor potential (TRP) channels contribute to abdominal pain in preclinical models of IBD, and TRP melastatin 3 (TRPM3) has recently been implicated in inflammatory bladder and joint pain in rodents. We hypothesized that TRPM3 is involved in colonic sensation and is sensitized during colitis. We used immunohistochemistry, ratiometric Ca2+ imaging, and colonic afferent nerve recordings in mice to evaluate TRPM3 protein expression in colon-projecting dorsal root ganglion (DRG) neurons, as well as functional activity in DRG neurons and colonic afferent nerves. Colitis was induced using dextran sulfate sodium (DSS) in drinking water. TRPM3 protein expression was observed in 76% of colon-projecting DRG neurons and was often colocalized with calcitonin gene-related peptide. The magnitudes of intracellular Ca2+ transients in DRG neurons in response to the TRPM3 agonists CIM-0216 and pregnenolone sulfate sodium were significantly greater in neurons from mice with colitis compared with controls. In addition, the percentage of DRG neurons from mice with colitis that responded to CIM-0216 was significantly increased. CIM-0216 also increased the firing rate of colonic afferent nerves from control and mice with colitis. The TRPM3 inhibitor isosakuranetin inhibited the mechanosensitive response to distension of wide dynamic range afferent nerve units from mice with colitis but had no effect in control mice. Thus, TRPM3 contributes to colonic sensory transduction and may be a potential target for treating pain in IBD.NEW & NOTEWORTHY This is the first study to characterize TRPM3 protein expression and function in colon-projecting DRG neurons. A TRPM3 agonist excited DRG neurons and colonic afferent nerves from healthy mice. TRPM3 agonist responses in DRG neurons were elevated during colitis. Inhibiting TRPM3 reduced the firing of wide dynamic range afferent nerves from mice with colitis but had no effect in control mice.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Canales Catiónicos TRPM , Ratones , Animales , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas/metabolismo , Ganglios Espinales , Colon/inervación , Dolor Abdominal , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
4.
J Neurosci ; 42(33): 6313-6324, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35790401

RESUMEN

While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.


Asunto(s)
Dolor Abdominal , Agonistas de Receptores de Cannabinoides , Cannabinoides , Receptores Opioides , Dolor Abdominal/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1 , Receptores Opioides/agonistas
5.
J Neurosci ; 42(16): 3316-3328, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35256532

RESUMEN

Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.


Asunto(s)
Analgésicos Opioides , Morfina , Analgésicos Opioides/efectos adversos , Animales , Tolerancia a Medicamentos , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/uso terapéutico , Tracto Gastrointestinal , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Morfina/uso terapéutico , Antagonistas de Narcóticos/farmacología , Proteína Quinasa C , Receptores Opioides , Receptores Opioides mu , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 117(26): 15281-15292, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546520

RESUMEN

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and ß-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.


Asunto(s)
Leucina Encefalina-2-Alanina/farmacología , Inflamación/complicaciones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores Opioides delta/agonistas , Animales , Colon/inervación , Leucina Encefalina-2-Alanina/administración & dosificación , Células HEK293 , Humanos , Ratones , Nanopartículas/administración & dosificación , Neuronas , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
Gut ; 71(4): 695-704, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33785555

RESUMEN

OBJECTIVE: The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN: Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS: NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit ß-arrestins and evoke MOPr endocytosis. CONCLUSION: In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.


Asunto(s)
Colitis , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Insuficiencia Respiratoria , Dolor Visceral , Animales , Colitis/inducido químicamente , Colon , Estreñimiento , Fentanilo/efectos adversos , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Ratones , Receptores Opioides , Microambiente Tumoral
8.
Gut ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36591617

RESUMEN

OBJECTIVE: Dietary therapies for irritable bowel syndrome (IBS) have received increasing interest but predicting which patients will benefit remains a challenge due to a lack of mechanistic insight. We recently found evidence of a role for the microbiota in dietary modulation of pain signalling in a humanised mouse model of IBS. This randomised cross-over study aimed to test the hypothesis that pain relief following reduced consumption of fermentable carbohydrates is the result of changes in luminal neuroactive metabolites. DESIGN: IBS (Rome IV) participants underwent four trial periods: two non-intervention periods, followed by a diet low (LFD) and high in fermentable carbohydrates for 3 weeks each. At the end of each period, participants completed questionnaires and provided stool. The effects of faecal supernatants (FS) collected before (IBS FS) and after a LFD (LFD FS) on nociceptive afferent neurons were assessed in mice using patch-clamp and ex vivo colonic afferent nerve recording techniques. RESULTS: Total IBS symptom severity score and abdominal pain were reduced by the LFD (N=25; p<0.01). Excitability of neurons was increased in response to IBS FS, but this effect was reduced (p<0.01) with LFD FS from pain-responders. IBS FS from pain-responders increased mechanosensitivity of nociceptive afferent nerve axons (p<0.001), an effect lost following LFD FS administration (p=NS) or when IBS FS was administered in the presence of antagonists of histamine receptors or protease inhibitors. CONCLUSIONS: In a subset of IBS patients with improvement in abdominal pain following a LFD, there is a decrease in pronociceptive signalling from FS, suggesting that changes in luminal mediators may contribute to symptom response.

9.
J Neurosci ; 41(1): 193-210, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172978

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.


Asunto(s)
Dolor en Cáncer/inducido químicamente , Carcinoma de Células Escamosas/complicaciones , Cisteína Endopeptidasas , Neoplasias de la Boca/complicaciones , Receptor PAR-2/agonistas , Anciano , Anciano de 80 o más Años , Animales , Arrestina/metabolismo , Dolor en Cáncer/psicología , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Cisteína Endopeptidasas/administración & dosificación , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteína Quinasa C/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor PAR-2/genética , Microambiente Tumoral/efectos de los fármacos
10.
Gastroenterology ; 160(1): 99-114.e3, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294476

RESUMEN

BACKGROUND & AIMS: Although functional gastrointestinal disorders (FGIDs), now called disorders of gut-brain interaction, have major economic effects on health care systems and adversely affect quality of life, little is known about their global prevalence and distribution. We investigated the prevalence of and factors associated with 22 FGIDs, in 33 countries on 6 continents. METHODS: Data were collected via the Internet in 24 countries, personal interviews in 7 countries, and both in 2 countries, using the Rome IV diagnostic questionnaire, Rome III irritable bowel syndrome questions, and 80 items to identify variables associated with FGIDs. Data collection methods differed for Internet and household groups, so data analyses were conducted and reported separately. RESULTS: Among the 73,076 adult respondents (49.5% women), diagnostic criteria were met for at least 1 FGID by 40.3% persons who completed the Internet surveys (95% confidence interval [CI], 39.9-40.7) and 20.7% of persons who completed the household surveys (95% CI, 20.2-21.3). FGIDs were more prevalent among women than men, based on responses to the Internet survey (odds ratio, 1.7; 95% CI, 1.6-1.7) and household survey (odds ratio, 1.3; 95% CI, 1.3-1.4). FGIDs were associated with lower quality of life and more frequent doctor visits. Proportions of subjects with irritable bowel syndrome were lower when the Rome IV criteria were used, compared with the Rome III criteria, in the Internet survey (4.1% vs 10.1%) and household survey (1.5% vs 3.5%). CONCLUSIONS: In a large-scale multinational study, we found that more than 40% of persons worldwide have FGIDs, which affect quality of life and health care use. Although the absolute prevalence was higher among Internet respondents, similar trends and relative distributions were found in people who completed Internet vs personal interviews.


Asunto(s)
Enfermedades Gastrointestinales/epidemiología , Salud Global , Adolescente , Adulto , Distribución por Edad , Anciano , Femenino , Enfermedades Gastrointestinales/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Distribución por Sexo , Encuestas y Cuestionarios , Adulto Joven
11.
Am J Gastroenterol ; 117(6): 937-946, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35506862

RESUMEN

There has been a dramatic increase in clinical studies examining the relationship between disorders of gut-brain interactions and symptoms evoked by food ingestion in the upper and lower gastrointestinal tract, but study design is challenging to verify valid endpoints. Consequently, mechanistic studies demonstrating biological relevance, biomarkers and novel therapeutic targets are greatly needed. This review highlights emerging mechanisms related to nutrient sensing and tasting, maldigestion, physical effects with underlying visceral hypersensitivity, allergy and immune mechanisms, food-microbiota interactions and gut-brain signaling, with a focus on patients with functional dyspepsia and irritable bowel syndrome. Many patients suffering from disorders of gut-brain interactions exhibit these mechanism(s) but which ones and which specific properties may vary widely from patient to patient. Thus, in addition to identifying these mechanisms and the need for further studies, biomarkers and novel therapeutic targets are identified that could enable enriched patient groups to be studied in future clinical trials examining the role of food in the generation of gut and non-gut symptoms.


Asunto(s)
Dispepsia , Microbioma Gastrointestinal , Hipersensibilidad , Síndrome del Colon Irritable , Microbiota , Encéfalo , Microbioma Gastrointestinal/fisiología , Humanos
12.
Gut ; 70(5): 970-981, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33272979

RESUMEN

Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.


Asunto(s)
Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Analgésicos/farmacología , Animales , Humanos , Ligandos , Nocicepción/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Fármacos del Sistema Sensorial/farmacología , Transducción de Señal/efectos de los fármacos , Vísceras/inervación
13.
Proc Natl Acad Sci U S A ; 115(31): E7438-E7447, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012612

RESUMEN

Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with ß-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.


Asunto(s)
Dolor Crónico/etiología , Endosomas/fisiología , Síndrome del Colon Irritable/fisiopatología , Receptor PAR-2/fisiología , Transducción de Señal/fisiología , Animales , Endocitosis , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Nocicepción , Nociceptores/fisiología , Tripsina/farmacología
14.
J Biol Chem ; 294(27): 10649-10662, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142616

RESUMEN

Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and ß-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or ß-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gßγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gßγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gßγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteína Quinasa C/metabolismo , Receptor PAR-2/metabolismo , Animales , Catepsinas/metabolismo , Membrana Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/antagonistas & inhibidores , Subunidades gamma de la Proteína de Unión al GTP/antagonistas & inhibidores , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/prevención & control , Elastasa de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/antagonistas & inhibidores , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Receptor PAR-2/agonistas , Transducción de Señal/efectos de los fármacos , Xantenos/administración & dosificación , Xantenos/farmacología
15.
J Neurosci ; 37(48): 11758-11768, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29089436

RESUMEN

Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 µm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.


Asunto(s)
Ganglios Espinales/enzimología , Microbioma Gastrointestinal/fisiología , Granzimas/administración & dosificación , Neuronas/enzimología , Simbiosis/fisiología , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/microbiología , Péptido Hidrolasas/administración & dosificación , Simbiosis/efectos de los fármacos
16.
Biomarkers ; 23(8): 735-741, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29871536

RESUMEN

PURPOSE: Examine the association between bulky DNA adduct levels in colon mucosa and colorectal adenoma prevalence, and explore the correlation between adduct levels in leukocytes and colon tissue. METHODS: Bulky DNA adduct levels were measured using 32P-postlabelling in biopsies of normal-appearing colon tissue and blood donated by 202 patients. Multivariable logistic regression was used to examine associations between DNA adducts, and interactions of DNA adduct-DNA repair polymorphisms, with the prevalence of colorectal adenomas. Correlation between blood and tissue levels of DNA adducts was evaluated using Spearman's correlation coefficient. RESULTS: An interaction between bulky DNA adduct levels and XPA rs1800975 on prevalence of colorectal adenoma was observed. Among individuals with lower DNA repair activity, increased DNA adduct levels were associated with increased colorectal adenoma prevalence (OR = 1.41 per SD increase, 95%CI: 0.92-2.18). Conversely, among individuals with normal DNA activity, an inverse association was observed (OR = 0.60 per SD increase, 95%CI: 0.34-1.07). Blood and colon DNA adduct levels were inversely correlated (ρ = -0.20). CONCLUSIONS: Among genetically susceptible individuals, higher bulky DNA adducts in the colon was associated with the prevalence of colorectal adenomas. The inverse correlation between blood and colon tissue measures demonstrates the importance of quantifying biomarkers in target tissues.


Asunto(s)
Neoplasias Colorrectales/etiología , Aductos de ADN/análisis , Mucosa Intestinal/química , Adenoma/etiología , Adulto , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Prevalencia , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
17.
Gut ; 66(7): 1241-1251, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-26976734

RESUMEN

OBJECTIVE: To gain mechanistic insights, we compared effects of low fermentable oligosaccharides, disaccharides and monosaccharides and polyols (FODMAP) and high FODMAP diets on symptoms, the metabolome and the microbiome of patients with IBS. DESIGN: We performed a controlled, single blind study of patients with IBS (Rome III criteria) randomised to a low (n=20) or high (n=20) FODMAP diet for 3 weeks. Symptoms were assessed using the IBS symptom severity scoring (IBS-SSS). The metabolome was evaluated using the lactulose breath test (LBT) and metabolic profiling in urine using mass spectrometry. Stool microbiota composition was analysed by 16S rRNA gene profiling. RESULTS: Thirty-seven patients (19 low FODMAP; 18 high FODMAP) completed the 3-week diet. The IBS-SSS was reduced in the low FODMAP diet group (p<0.001) but not the high FODMAP group. LBTs showed a minor decrease in H2 production in the low FODMAP compared with the high FODMAP group. Metabolic profiling of urine showed groups of patients with IBS differed significantly after the diet (p<0.01), with three metabolites (histamine, p-hydroxybenzoic acid, azelaic acid) being primarily responsible for discrimination between the two groups. Histamine, a measure of immune activation, was reduced eightfold in the low FODMAP group (p<0.05). Low FODMAP diet increased Actinobacteria richness and diversity, and high FODMAP diet decreased the relative abundance of bacteria involved in gas consumption. CONCLUSIONS: IBS symptoms are linked to FODMAP content and associated with alterations in the metabolome. In subsets of patients, FODMAPs modulate histamine levels and the microbiota, both of which could alter symptoms. TRIAL REGISTRATION NUMBER: NCT01829932.


Asunto(s)
Dieta , Síndrome del Colon Irritable/dietoterapia , Adulto , Anciano , Anciano de 80 o más Años , Pruebas Respiratorias , Ácidos Dicarboxílicos/orina , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Histamina/orina , Humanos , Síndrome del Colon Irritable/metabolismo , Lactulosa , Masculino , Metaboloma , Persona de Mediana Edad , Parabenos/análisis , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Método Simple Ciego
18.
Gut ; 66(12): 2121-2131, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27590998

RESUMEN

AIMS AND BACKGROUND: Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. METHODS: Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca2+ imaging techniques. RESULTS: Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein ßϒ subunits. CONCLUSIONS: Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD.


Asunto(s)
Colitis/metabolismo , Colon/inervación , Ganglios Espinales/metabolismo , Estrés Psicológico/fisiopatología , betaendorfina/metabolismo , Adulto , Anciano , Animales , Biopsia , Enfermedad Crónica , Colitis/inmunología , Citocinas/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Naloxona/farmacología , Nociceptores/fisiología , Técnicas de Placa-Clamp , Transducción de Señal
19.
Gut ; 66(10): 1767-1778, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28096305

RESUMEN

OBJECTIVES: Proteases are key mediators of pain and altered enteric neuronal signalling, although the types and sources of these important intestinal mediators are unknown. We hypothesised that intestinal epithelium is a major source of trypsin-like activity in patients with IBS and this activity signals to primary afferent and enteric nerves and induces visceral hypersensitivity. DESIGN: Trypsin-like activity was determined in tissues from patients with IBS and in supernatants of Caco-2 cells stimulated or not. These supernatants were also applied to cultures of primary afferents. mRNA isoforms of trypsin (PRSS1, 2 and 3) were detected by reverse transcription-PCR, and trypsin-3 protein expression was studied by western blot analysis and immunohistochemistry. Electrophysiological recordings and Ca2+ imaging in response to trypsin-3 were performed in mouse primary afferent and in human submucosal neurons, respectively. Visceromotor response to colorectal distension was recorded in mice administered intracolonically with trypsin-3. RESULTS: We showed that stimulated intestinal epithelial cells released trypsin-like activity specifically from the basolateral side. This activity was able to activate sensory neurons. In colons of patients with IBS, increased trypsin-like activity was associated with the epithelium. We identified that trypsin-3 was the only form of trypsin upregulated in stimulated intestinal epithelial cells and in tissues from patients with IBS. Trypsin-3 was able to signal to human submucosal enteric neurons and mouse sensory neurons, and to induce visceral hypersensitivity in vivo, all by a protease-activated receptor-2-dependent mechanism. CONCLUSIONS: In IBS, the intestinal epithelium produces and releases the active protease trypsin-3, which is able to signal to enteric neurons and to induce visceral hypersensitivity.


Asunto(s)
Células Epiteliales/enzimología , Mucosa Intestinal/enzimología , Síndrome del Colon Irritable/enzimología , Síndrome del Colon Irritable/genética , Tripsina/genética , Tripsina/metabolismo , Animales , Células CACO-2 , Estudios de Casos y Controles , Colon/enzimología , Colon/inervación , Medios de Cultivo Condicionados/farmacología , Dipéptidos/farmacología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/diagnóstico por imagen , Sistema Nervioso Entérico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Ganglios Espinales/citología , Humanos , Hipersensibilidad/enzimología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Isoxazoles/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones , Microscopía Confocal , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Permeabilidad/efectos de los fármacos , ARN Mensajero/análisis , Ratas , Receptor PAR-2/antagonistas & inhibidores , Receptor PAR-2/metabolismo , Tripsina/farmacología , Tripsinógeno/genética , Regulación hacia Arriba
20.
J Biol Chem ; 291(21): 11285-99, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27030010

RESUMEN

Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gßγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gßγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gßγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gßγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteína Quinasa C/metabolismo , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Señalización del Calcio , Línea Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/antagonistas & inhibidores , Subunidades gamma de la Proteína de Unión al GTP/antagonistas & inhibidores , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Ratas , Xantenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA