Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
FASEB J ; 37(12): e23257, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902616

RESUMEN

Cardiomyopathy is a major complication of thalassemia, yet the precise underlying molecular mechanisms remain unclear. We examined whether altered lipid metabolism is an early driving factor in the development of cardiomyopathy using the Th3/+ mouse model of thalassemia. At age 20 weeks, male and female Th3/+ mice manifested anemia and iron overload; however, only males displayed metabolic defects and altered cardiac function. Untargeted lipidomics indicated that the circulating levels of 35 lipid species were significantly altered in Th3/+ mice compared to wild-type controls: triglycerides (TGs) with saturated fatty acids (FAs; TG42:0 and TG44:0) were elevated, while TGs with unsaturated FAs (TG(18:2_20:5_18:2 and TG54:8)) were reduced. Similarly, phosphatidylcholines (PCs) with long chain FAs (palmitic (16:0) or oleic (18:1)) were increased, while PCs with polyunsaturated FAs decreased. Circulating PC(16:0_14:0), GlcCer(d18:1/24:0) correlated significantly with iron overload and cardiac hypertrophy. 16S rRNA gene profiling revealed alterations in the intestinal microbiota of Th3/+ mice. Differentially abundant bacterial genera correlated with PC(39:6), PC(18:1_22:6), GlcCer(d18:1/24:1) and CE(14:0). These results provide new knowledge on perturbations in lipid metabolism and the gut microbiota of Th3/+ mice and identify specific factors which may represent early biomarkers or therapeutic targets to prevent development of cardiomyopathy in ß-thalassemia.


Asunto(s)
Cardiomiopatías , Microbioma Gastrointestinal , Cardiopatías , Sobrecarga de Hierro , Talasemia , Femenino , Masculino , Animales , Ratones , Metabolismo de los Lípidos , ARN Ribosómico 16S , Talasemia/complicaciones , Modelos Animales de Enfermedad , Glucosilceramidas , Sobrecarga de Hierro/complicaciones , Triglicéridos
2.
Gut ; 72(5): 896-905, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36881441

RESUMEN

OBJECTIVE: Faecal microbiota transplantation (FMT) in germ-free (GF) mice is a common approach to study the causal role of the gut microbiota in metabolic diseases. Lack of consideration of housing conditions post-FMT may contribute to study heterogeneity. We compared the impact of two housing strategies on the metabolic outcomes of GF mice colonised by gut microbiota from mice treated with a known gut modulator (cranberry proanthocyanidins (PAC)) or vehicle. DESIGN: High-fat high-sucrose diet-fed GF mice underwent FMT-PAC colonisation in sterile individual positive flow ventilated cages under rigorous housing conditions and then maintained for 8 weeks either in the gnotobiotic-axenic sector or in the specific pathogen free (SPF) sector of the same animal facility. RESULTS: Unexpectedly, 8 weeks after colonisation, we observed opposing liver phenotypes dependent on the housing environment of mice. Mice housed in the GF sector receiving the PAC gut microbiota showed a significant decrease in liver weight and hepatic triglyceride accumulation compared with control group. Conversely, exacerbated liver steatosis was observed in the FMT-PAC mice housed in the SPF sector. These phenotypic differences were associated with housing-specific profiles of colonising bacterial in the gut and of faecal metabolites. CONCLUSION: These results suggest that the housing environment in which gnotobiotic mice are maintained post-FMT strongly influences gut microbiota composition and function and can lead to distinctive phenotypes in recipient mice. Better standardisation of FMT experiments is needed to ensure reproducible and translatable results.


Asunto(s)
Vivienda , Microbiota , Animales , Ratones , Calidad de la Vivienda , Obesidad/metabolismo , Trasplante de Microbiota Fecal , Fenotipo , Dieta Alta en Grasa/efectos adversos , Vida Libre de Gérmenes , Ratones Endogámicos C57BL
3.
Am J Physiol Endocrinol Metab ; 325(6): E661-E671, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877794

RESUMEN

Overconsumption of added sugars is now largely recognized as a major culprit in the global situation of obesity and metabolic disorders. Previous animal studies reported that maple syrup (MS) is less deleterious than refined sugars on glucose metabolism and hepatic health, but the mechanisms remain poorly studied. Beyond its content in sucrose, MS is a natural sweetener containing several bioactive compounds, such as polyphenols and inulin, which are potential gut microbiota modifiers. We aimed to investigate the impact of MS on metabolic health and gut microbiota in male C57Bl/6J mice fed a high-fat high-sucrose (HFHS + S) diet or an isocaloric HFHS diet in which a fraction (10% of the total caloric intake) of the sucrose was substituted by MS (HFHS + MS). Insulin and glucose tolerance tests were performed at 5 and 7 wk into the diet, respectively. The fecal microbiota was analyzed by whole-genome shotgun sequencing. Liver lipids and inflammation were determined, and hepatic gene expression was assessed by transcriptomic analysis. Maple syrup was less deleterious on insulin resistance and decreased liver steatosis compared with mice consuming sucrose. This could be explained by the decreased intestinal α-glucosidase activity, which is involved in carbohydrate digestion and absorption. Metagenomic shotgun sequencing analysis revealed that MS intake increased the abundance of Faecalibaculum rodentium, Romboutsia ilealis, and Lactobacillus johnsonii, which all possess gene clusters involved in carbohydrate metabolism, such as sucrose utilization and butyric acid production. Liver transcriptomic analyses revealed that the cytochrome P450 (Cyp450) epoxygenase pathway was differently modulated between HFHS + S- and HFHS + MS-fed mice. These results show that substituting sucrose for MS alleviated dysmetabolism in diet-induced obese mice, which were associated with decreased carbohydrate digestion and shifting gut microbiota.NEW & NOTEWORTHY The natural sweetener maple syrup has sparked much interest as an alternative to refined sugars. This study aimed to investigate whether the metabolic benefits of substituting sucrose with an equivalent dose of maple syrup could be linked to changes in gut microbiota composition and digestion of carbohydrates in obese mice. We demonstrated that maple syrup is less detrimental than sucrose on metabolic health and possesses a prebiotic-like activity through novel gut microbiota and liver mechanisms.


Asunto(s)
Acer , Microbioma Gastrointestinal , Masculino , Animales , Ratones , Sacarosa , Ratones Obesos , Hígado/metabolismo , Dieta Alta en Grasa , Edulcorantes , Digestión , Ratones Endogámicos C57BL
4.
Int J Obes (Lond) ; 47(7): 630-641, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142736

RESUMEN

OBJECTIVE: To determine whether the metabolic benefits of hypoabsorptive surgeries are associated with changes in the gut endocannabinoidome (eCBome) and microbiome. METHODS: Biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) were performed in diet-induced obese (DIO) male Wistar rats. Control groups fed a high-fat diet (HF) included sham-operated (SHAM HF) and SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW). Body weight, fat mass gain, fecal energy loss, HOMA-IR, and gut-secreted hormone levels were measured. The levels of eCBome lipid mediators and prostaglandins were quantified in different intestinal segments by LC-MS/MS, while expression levels of genes encoding eCBome metabolic enzymes and receptors were determined by RT-qPCR. Metataxonomic (16S rRNA) analysis was performed on residual distal jejunum, proximal jejunum, and ileum contents. RESULTS: BPD-DS and SADI-S reduced fat gain and HOMA-IR, while increasing glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels in HF-fed rats. Both surgeries induced potent limb-dependent alterations in eCBome mediators and in gut microbial ecology. In response to BPD-DS and SADI-S, changes in gut microbiota were significantly correlated with those of eCBome mediators. Principal component analyses revealed connections between PYY, N-oleoylethanolamine (OEA), N-linoleoylethanolamine (LEA), Clostridium, and Enterobacteriaceae_g_2 in the proximal and distal jejunum and in the ileum. CONCLUSIONS: BPD-DS and SADI-S caused limb-dependent changes in the gut eCBome and microbiome. The present results indicate that these variables could significantly influence the beneficial metabolic outcome of hypoabsorptive bariatric surgeries.


Asunto(s)
Desviación Biliopancreática , Derivación Gástrica , Hormonas Gastrointestinales , Microbioma Gastrointestinal , Obesidad Mórbida , Masculino , Ratas , Animales , Ratas Wistar , Cromatografía Liquida , ARN Ribosómico 16S , Espectrometría de Masas en Tándem , Desviación Biliopancreática/métodos , Duodeno/cirugía , Gastrectomía , Tirosina , Obesidad Mórbida/cirugía , Derivación Gástrica/métodos , Estudios Retrospectivos
5.
J Nutr ; 153(7): 1984-1993, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37225124

RESUMEN

BACKGROUND: Promising results in improvement of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) have been identified following probiotic (PRO) treatment. OBJECTIVES: To evaluate PRO supplementation on hepatic fibrosis, inflammatory and metabolic markers, and gut microbiota in NASH patients. METHODS: In a double-blind, placebo-controlled clinical trial, 48 patients with NASH with a median age of 58 y and median BMI of 32.7 kg/m2 were randomly assigned to receive PROs (Lactobacillus acidophilus 1 × 109 colony forming units and Bifidobacterium lactis 1 × 109 colony forming units) or a placebo daily for 6 mo. Serum aminotransferases, total cholesterol and fractions, C-reactive protein, ferritin, interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1, and leptin were assessed. To evaluate liver fibrosis, Fibromax was used. In addition, 16S rRNA gene-based analysis was performed to evaluate gut microbiota composition. All assessments were performed at baseline and after 6 mo. For the assessment of outcomes after treatment, mixed generalized linear models were used to evaluate the main effects of the group-moment interaction. For multiple comparisons, Bonferroni correction was applied (α = 0.05/4 = 0.0125). Results for the outcomes are presented as mean and SE. RESULTS: The AST to Platelet Ratio Index (APRI) score was the primary outcome that decreased over time in the PRO group. Aspartate aminotransferase presented a statistically significant result in the group-moment interaction analyses, but no statistical significance was found after the Bonferroni correction. Liver fibrosis, steatosis, and inflammatory activity presented no statistically significant differences between the groups. No major shifts in gut microbiota composition were identified between groups after PRO treatment. CONCLUSIONS: Patients with NASH who received PRO supplementation for 6 mo presented improvement in the APRI score after treatment. These results draw attention to clinical practice and suggest that supplementation with PROs alone is not sufficient to improve enzymatic liver markers, inflammatory parameters, and gut microbiota in patients with NASH. This trial was registered at clinicaltrials.gov as NCT02764047.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , ARN Ribosómico 16S , Cirrosis Hepática , Probióticos/uso terapéutico , Método Doble Ciego
6.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629151

RESUMEN

The development of Metabolic Syndrome (MetS) affects a large number of people around the world and represents a major issue in the field of health. Thus, it is important to implement new strategies to reduce its prevalence, and various approaches are currently under development. Recently, an eco-friendly technology named electrodialysis with ultrafiltration membrane (EDUF) was used successfully for the first time at a semi-industrial scale to produce three fractions concentrated in bioactive peptides (BPs) from an enzymatically hydrolyzed whey protein concentrate (WPC): the initial (F1), the final (F2) and the recovery fraction (F3), and it was demonstrated in vitro that F3 exhibited interesting DPP-IV inhibitory effects. Therefore, the present study aimed to evaluate the effect of each fraction on in vivo models of obesity. A daily dose of 312.5 mg/kg was administered to High Fat/High Sucrose diet (HFHS) induced C57BL6/J mice for eight weeks. The physiological parameters of each group and alterations of their gut microbiota by the fractions were assessed. Little effect of the different fractions was demonstrated on the physiological state of the mice, probably due to the digestion process of the BP content. However, there were changes in the gut microbiota composition and functions of mice treated with F3.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Animales , Ratones , Síndrome Metabólico/terapia , Hidrolisados de Proteína/farmacología , Ultrafiltración , Suero Lácteo , Ratones Endogámicos C57BL
7.
Int J Obes (Lond) ; 46(2): 297-306, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34686781

RESUMEN

OBJECTIVE: The study aimed at comparing how changes in the gut microbiota are associated to the beneficial effects of the most clinically efficient hypoabsorptive bariatric procedures, namely Roux-en-Y gastric bypass (RYGB), biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). METHODS: Diet-induced obese (DIO) male Wistar rats were divided into seven groups. In addition to the groups subjected to RYGB, BPD-DS and SADI-S, the following four control groups were included: SHAM-operated rats fed a high-fat diet (SHAM HF), SHAM fed a low-fat diet (SHAM LF), SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW) and sleeve-gastrectomy (SG) rats. Body weight, food intake, glucose tolerance, insulin sensitivity/resistance, and L-cell secretion were assessed. The gut microbiota (16 S ribosomal RNA gene sequencing) as well as the fecal and cæcal contents of short-chain fatty acids (SCFAs) were also analyzed prior to, and after the surgeries. RESULTS: The present study demonstrates the beneficial effect of RYGB, BPD-DS and SADI-S on fat mass gain and glucose metabolism in DIO rats. These benefits were proportional to the effect of the surgeries on food digestibility (BPD-DS > SADI-S > RYGB). Notably, hypoabsorptive surgeries led to consonant microbial signatures characterized by decreased abundance of the Ruminococcaceae (Oscillospira and Ruminococcus), Oscillospiraceae (Oscillibacter) and Christensenellaceae, and increased abundance of the Clostridiaceae (Clostridium), Sutterellaceae (Sutterella) and Enterobacteriaceae. The gut bacteria following hypoabsorptive surgeries were associated with higher fecal levels of propionate, butyrate, isobutyrate and isovalerate. Increases in the fecal SCFAs were in turn positively and strongly correlated with the levels of peptide tyrosine-tyrosine (PYY) and with the beneficial effects of the surgery. CONCLUSION: The present study emphasizes the consistency with which the three major hypoabsorptive bariatric procedures RYGB, BPD-DS and SADI-S create a gut microbial environment capable of producing a SCFA profile favorable to the secretion of PYY and to beneficial metabolic effects.


Asunto(s)
Cirugía Bariátrica/estadística & datos numéricos , Ácidos Grasos Volátiles/análisis , Microbioma Gastrointestinal/fisiología , Análisis de Varianza , Animales , Cirugía Bariátrica/métodos , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/aislamiento & purificación , Ácidos Grasos Volátiles/metabolismo , Masculino , Obesidad/cirugía , Ratas , Ratas Wistar/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1014-G1033, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881354

RESUMEN

Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.


Asunto(s)
Dieta , Grasas de la Dieta , Fibras de la Dieta , Tracto Gastrointestinal/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Alimentación Animal , Animales , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina/fisiología , Masculino , Ratones
9.
J Nutr ; 151(5): 1175-1189, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33851198

RESUMEN

BACKGROUND: Cholecalciferol (D3) may improve inflammation, and thus provide protection from cardiometabolic diseases (CMD), although controversy remains. Omega-3 fatty acids (ω-3FA) may also prevent the development of CMD, but the combined effects of ω-3FA and D3 are not fully understood. OBJECTIVES: We determined the chronic independent and combined effects of D3 and ω-3FA on body weight, glucose homeostasis, and markers of inflammation in obese mice. METHODS: We gave 8-week-old male C57BL/6J mice, which had been fed a high-fat, high-sucrose (HF) diet (65.5% kcal fat, 19.8% kcal carbohydrate, and 14% kcal protein) for 12 weeks, either a standard D3 dose (+SD3; 1400 IU D3/kg diet) or a high D3 dose (+HD3; 15,000 IU D3/kg diet). We fed 1 +SD3 group and 1 +HD3 group with 4.36% (w/w) fish oil (+ω-3FA; 44% eicosapentaenoic acid, 25% docosahexaenoic acid), and fed the other 2 groups with corn oil [+omega-6 fatty acids (ω-6FA)]. A fifth group was fed a low-fat (LF; 15.5% kcal) diet. LF and HF+ω-6+SD3 differences were tested by a Student's t-test and HF treatment differences were tested by a 2-way ANOVA. RESULTS: D3 supplementation in the +HD3 groups did not significantly increase plasma total 25-hydroxyvitamin D and 25-hydroxyvitamin D3 [25(OH)D3] versus the +SD3 groups, but it increased 3-epi-25-hydroxyvitamin D3 levels by 3.4 ng/mL in the HF+ω-6+HD3 group and 4.0 ng/mL in the HF+ω-3+HD3 group, representing 30% and 70%, respectively, of the total 25(OH)D3 increase. Energy expenditure increased in those mice fed diets +ω-3FA, by 3.9% in the HF+ω-3+SD3 group and 7.4% in the HF+ω-3+HD3 group, but it did not translate into lower body weight. The glucose tolerance curves of the HF+ω-3+SD3 and HF+ω-3+HD3 groups were improved by 11% and 17%, respectively, as compared to the respective +ω-6FA groups. D3 supplementation, within the ω-3FA groups, altered the gut microbiota by increasing the abundance of S24-7 and Lachnospiraceae taxa compared to the standard dose, while within the ω-6FA groups, D3 supplementation did not modulate specific taxa. CONCLUSIONS: Overall, D3 supplementation does not prevent CMD or enhance the beneficial effects of ω-3FA in vitamin D-sufficient obese mice.


Asunto(s)
Colecalciferol/administración & dosificación , Colecalciferol/farmacología , Ácidos Grasos Omega-3/farmacología , Síndrome Metabólico/prevención & control , Obesidad/inducido químicamente , Animales , Dieta Alta en Grasa , Sacarosa en la Dieta/administración & dosificación , Sacarosa en la Dieta/efectos adversos , Suplementos Dietéticos , Sinergismo Farmacológico , Ácidos Grasos Omega-3/administración & dosificación , Intolerancia a la Glucosa , Humanos , Leptina/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Distribución Aleatoria
10.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768966

RESUMEN

A daily consumption of cranberry juice (CJ) is linked to many beneficial health effects due to its richness in polyphenols but could also awake some intestinal discomforts due to its organic acid content and possibly lead to intestinal inflammation. Additionally, the impact of such a juice on the gut microbiota is still unknown. Thus, this study aimed to determine the impacts of a daily consumption of CJ and its successive deacidification on the intestinal inflammation and on the gut microbiota in mice. Four deacidified CJs (DCJs) (deacidification rates of 0, 40, 60, and 80%) were produced by electrodialysis with bipolar membrane (EDBM) and administered to C57BL/6J mice for four weeks, while the diet (CHOW) and the water were ad libitum. Different parameters were measured to determine intestinal inflammation when the gut microbiota was profiled. Treatment with a 0% DCJ did not induce intestinal inflammation but increased the gut microbiota diversity and induced a modulation of its functions in comparison with control (water). The effect of the removal of the organic acid content of CJ on the decrease of intestinal inflammation could not be observed. However, deacidification by EDBM of CJ induced an additional increase, in comparison with a 0% DCJ, in the Lachnospiraceae family which have beneficial effects and functions associated with protection of the intestine: the lower the organic acid content, the more bacteria of the Lachnospiraceae family and functions having a positive impact on the gut microbiota.


Asunto(s)
Ácidos/efectos adversos , Jugos de Frutas y Vegetales/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Vaccinium macrocarpon/efectos adversos , Ácidos/química , Ácidos/aislamiento & purificación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biodiversidad , Diálisis/métodos , Femenino , Jugos de Frutas y Vegetales/análisis , Concentración de Iones de Hidrógeno , Inflamación/etiología , Inflamación/patología , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Vaccinium macrocarpon/química
11.
Am J Physiol Endocrinol Metab ; 318(6): E965-E980, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32228321

RESUMEN

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Asunto(s)
Antocianinas/farmacología , Arándanos Azules (Planta) , Frutas , Microbioma Gastrointestinal/efectos de los fármacos , Resistencia a la Insulina , Obesidad/metabolismo , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Sacarosa en la Dieta , Trasplante de Microbiota Fecal , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología
12.
J Nutr ; 150(10): 2673-2686, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32886125

RESUMEN

BACKGROUND: Recent meta-analyses suggest that the consumption of fermented dairy products reduces type 2 diabetes and cardiovascular disease (CVD) risk, although the underlying mechanisms remain unclear. OBJECTIVE: We evaluated whether dairy protein products modulated gut microbiota and cardiometabolic features in mouse models of diet-induced obesity and CVD. METHODS: Eight-week-old C57BL/6J wild-type (WT) and LDLr-/-ApoB100/100 (LRKO) male mice were fed for 12 and 24 wk, respectively, with a high-fat/high-sucrose diet [66% kcal lipids, 22% kcal carbohydrates (100% sucrose), 12% kcal proteins]. The protein sources of the 4 diets were 100% nondairy protein (NDP), or 50% of the NDP energy replaced by milk (MP), milk fermented by Lactobacillus helveticus (FMP), or Greek-style yogurt (YP) protein. Fecal 16S rRNA gene-based amplicon sequencing, intestinal gene expression, and glucose tolerance test were conducted. Hepatic inflammation and circulating adhesion molecules were measured by multiplex assays. RESULTS: Feeding WT mice for 12 wk led to a 74% increase in body weight, whereas after 24 wk the LRKO mice had a 101.5% increase compared with initial body weight. Compared with NDP and MP, the consumption of FMP and YP modulated the gut microbiota composition in a similar clustering pattern, upregulating the Streptococcus genus in both genotypes. In WT mice, feeding YP compared with NDP increased the expression of genes involved in jejunal (Reg3b, 7.3-fold, P = 0.049) and ileal (Ocln, 1.7-fold, P = 0.047; Il1-ß,1.7-fold, P = 0.038; Nos2, 3.8-fold, P = 0.018) immunity and integrity. In LRKO mice, feeding YP compared with MP improved insulin sensitivity by 65% (P = 0.039). In LRKO mice, feeding with FMP versus NDP attenuated hepatic inflammation (monocyte chemoattractant protein 1, 2.1-fold, P ˂ 0.0001; IL1-ß, 5.7-fold, P = 0.0003; INF-γ, 1.7-fold, P = 0.002) whereas both FMP [vascular adhesion molecule 1 (VCAM1), 1.3-fold, P = 0.0003] and YP (VCAM1, 1.04-fold, P = 0.013; intracellular adhesion molecule 1, 1.4-fold, P = 0.028) decreased circulating adhesion molecules. CONCLUSION: Both fermented dairy protein products reduce cardiometabolic risk factors in diet-induced obese mice, possibly by modulating the gut microbiota.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Productos Lácteos Cultivados/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Metabólicas/prevención & control , Proteínas de la Leche/farmacología , Obesidad/inducido químicamente , Animales , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biomarcadores/sangre , Dieta , Dieta Alta en Grasa , Sacarosa en la Dieta/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Leche/química , Proteínas de la Leche/química , Receptores de LDL/genética , Receptores de LDL/metabolismo
13.
FASEB J ; 33(4): 4921-4935, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30596521

RESUMEN

Given the growing evidence that gut dysfunction, including changes in gut microbiota composition, plays a critical role in the development of inflammation and metabolic diseases, the identification of novel probiotic bacteria with immunometabolic properties has recently attracted more attention. Herein, bacterial strains were first isolated from dairy products and human feces and then screened in vitro for their immunomodulatory activity. Five selected strains were further analyzed in vivo, using a mouse model of diet-induced obesity. C57BL/6 mice were fed a high-fat high-sucrose diet, in combination with 1 of 3 Lactobacillus strains (Lb38, L. plantarum; L79, L. paracasei/casei; Lb102, L. rhamnosus) or Bifidobacterium strains (Bf26, Bf141, 2 different strains of B. animalis ssp. lactis species) administered for 8 wk at 109 colony-forming units/d. Whereas 3 strains showed only modest (Lb38, Bf26) or no (L79) effects, Lb102 and Bf141 reduced diet-induced obesity, visceral fat accretion, and inflammation, concomitant with improvement of glucose tolerance and insulin sensitivity. Further analysis revealed that Lb102 and Bf141 enhanced intestinal integrity markers in association with selective changes in gut microbiota composition. We have thus identified 2 new potential probiotic bacterial strains with immunometabolic properties to alleviate obesity development and associated metabolic disturbances.-Le Barz, M., Daniel, N., Varin, T. V., Naimi, S., Demers-Mathieu, V., Pilon, G., Audy, J., Laurin, E., Roy, D., Urdaci, M. C., St-Gelais, D., Fliss, I, Marette, A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity.


Asunto(s)
Bifidobacterium animalis/fisiología , Lacticaseibacillus rhamnosus/fisiología , Obesidad/dietoterapia , Obesidad/microbiología , Probióticos/uso terapéutico , Tejido Adiposo/metabolismo , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/metabolismo , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , ARN Ribosómico 16S/genética
14.
Gut ; 68(3): 453-464, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30064988

RESUMEN

OBJECTIVE: The consumption of fruits is strongly associated with better health and higher bacterial diversity in the gut microbiota (GM). Camu camu (Myrciaria dubia) is an Amazonian fruit with a unique phytochemical profile, strong antioxidant potential and purported anti-inflammatory potential. DESIGN: By using metabolic tests coupled with 16S rRNA gene-based taxonomic profiling and faecal microbial transplantation (FMT), we have assessed the effect of a crude extract of camu camu (CC) on obesity and associated immunometabolic disorders in high fat/high sucrose (HFHS)-fed mice. RESULTS: Treatment of HFHS-fed mice with CC prevented weight gain, lowered fat accumulation and blunted metabolic inflammation and endotoxaemia. CC-treated mice displayed improved glucose tolerance and insulin sensitivity and were also fully protected against hepatic steatosis. These effects were linked to increased energy expenditure and upregulation of uncoupling protein 1 mRNA expression in the brown adipose tissue (BAT) of CC-treated mice, which strongly correlated with the mRNA expression of the membrane bile acid (BA) receptor TGR5. Moreover, CC-treated mice showed altered plasma BA pool size and composition and drastic changes in the GM (eg, bloom of Akkermansia muciniphila and a strong reduction of Lactobacillus). Germ-free (GF) mice reconstituted with the GM of CC-treated mice gained less weight and displayed higher energy expenditure than GF-mice colonised with the FM of HFHS controls. CONCLUSION: Our results show that CC prevents visceral and liver fat deposition through BAT activation and increased energy expenditure, a mechanism that is dependent on the GM and linked to major changes in the BA pool size and composition.


Asunto(s)
Metabolismo Energético/fisiología , Frutas/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/prevención & control , Animales , Ácido Ascórbico/uso terapéutico , Glucemia/metabolismo , Endotoxemia/prevención & control , Hígado Graso/microbiología , Hígado Graso/fisiopatología , Hígado Graso/prevención & control , Trasplante de Microbiota Fecal , Homeostasis/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/microbiología , Obesidad/fisiopatología , Paniculitis/prevención & control , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
15.
Diabetologia ; 61(4): 919-931, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29270816

RESUMEN

AIMS/HYPOTHESIS: There is growing evidence that fruit polyphenols exert beneficial effects on the metabolic syndrome, but the underlying mechanisms remain poorly understood. In the present study, we aimed to analyse the effects of polyphenolic extracts from five types of Arctic berries in a model of diet-induced obesity. METHODS: Male C57BL/6 J mice were fed a high-fat/high-sucrose (HFHS) diet and orally treated with extracts of bog blueberry (BBE), cloudberry (CLE), crowberry (CRE), alpine bearberry (ABE), lingonberry (LGE) or vehicle (HFHS) for 8 weeks. An additional group of standard-chow-fed, vehicle-treated mice was included as a reference control for diet-induced obesity. OGTTs and insulin tolerance tests were conducted, and both plasma insulin and C-peptide were assessed throughout the OGTT. Quantitative PCR, western blot analysis and ELISAs were used to assess enterohepatic immunometabolic features. Faecal DNA was extracted and 16S rRNA gene-based analysis was used to profile the gut microbiota. RESULTS: Treatment with CLE, ABE and LGE, but not with BBE or CRE, prevented both fasting hyperinsulinaemia (mean ± SEM [pmol/l]: chow 67.2 ± 12.3, HFHS 153.9 ± 19.3, BBE 114.4 ± 14.3, CLE 82.5 ± 13.0, CRE 152.3 ± 24.4, ABE 90.6 ± 18.0, LGE 95.4 ± 10.5) and postprandial hyperinsulinaemia (mean ± SEM AUC [pmol/l × min]: chow 14.3 ± 1.4, HFHS 31.4 ± 3.1, BBE 27.2 ± 4.0, CLE 17.7 ± 2.2, CRE 32.6 ± 6.3, ABE 22.7 ± 18.0, LGE 23.9 ± 2.5). None of the berry extracts affected C-peptide levels or body weight gain. Levels of hepatic serine phosphorylated Akt were 1.6-, 1.5- and 1.2-fold higher with CLE, ABE and LGE treatment, respectively, and hepatic carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-1 tyrosine phosphorylation was 0.6-, 0.7- and 0.9-fold increased in these mice vs vehicle-treated, HFHS-fed mice. These changes were associated with reduced liver triacylglycerol deposition, lower circulating endotoxins, alleviated hepatic and intestinal inflammation, and major gut microbial alterations (e.g. bloom of Akkermansia muciniphila, Turicibacter and Oscillibacter) in CLE-, ABE- and LGE-treated mice. CONCLUSIONS/INTERPRETATION: Our findings reveal novel mechanisms by which polyphenolic extracts from ABE, LGE and especially CLE target the gut-liver axis to protect diet-induced obese mice against metabolic endotoxaemia, insulin resistance and hepatic steatosis, which importantly improves hepatic insulin clearance. These results support the potential benefits of these Arctic berries and their integration into health programmes to help attenuate obesity-related chronic inflammation and metabolic disorders. DATA AVAILABILITY: All raw sequences have been deposited in the public European Nucleotide Archive server under accession number PRJEB19783 ( https://www.ebi.ac.uk/ena/data/view/PRJEB19783 ).


Asunto(s)
Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Resistencia a la Insulina , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Péptido C/sangre , Dieta Alta en Grasa , Endotoxemia/metabolismo , Frutas/química , Glucosa/metabolismo , Homeostasis , Insulina/sangre , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , ARN Ribosómico 16S/genética , Factores de Tiempo
16.
Biochim Biophys Acta ; 1854(10 Pt B): 1630-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25891899

RESUMEN

We report the discovery and initial optimization of diphenpyramide and several of its analogs as hRIO2 kinase ligands. One of these analogs is the most selective hRIO2 ligand reported to date. Diphenpyramide is a Cyclooxygenase 1 and 2 inhibitor that was used as an anti-inflammatory agent. The RIO2 kinase affinity of diphenpyramide was discovered by serendipity while profiling of 13 marketed drugs on a large 456 kinase assay panel. The inhibition values also suggested a relative selectivity of diphenpyramide for RIO2 against the other kinases in the panel. Subsequently three available and eight newly synthesized analogs were assayed, one of which showed a 10 fold increased hRIO2 binding affinity. Additionally, this compound shows significantly better selectivity over assayed kinases, when compared to currently known RIO2 inhibitors. As RIO2 is involved in the biosynthesis of the ribosome and cell cycle regulation, our selective ligand may be useful for the delineation of the biological role of this kinase. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Acetamidas/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Humanos , Ligandos , Estructura Molecular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Ribosomas/efectos de los fármacos
17.
Biochim Biophys Acta ; 1854(10 Pt B): 1595-604, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25861861

RESUMEN

Recent advances in understanding the activity and selectivity of kinase inhibitors and their relationships to protein structure are presented. Conformational selection in kinases is studied from empirical, data-driven and simulation approaches. Ligand binding and its affinity are, in many cases, determined by the predetermined active and inactive conformation of kinases. Binding affinity and selectivity predictions highlight the current state of the art and advances in computational chemistry as it applies to kinase inhibitor discovery. Kinome wide inhibitor profiling and cell panel profiling lead to a better understanding of selectivity and allow for target validation and patient tailoring hypotheses. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Asunto(s)
Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-abl/genética , Familia-src Quinasas/genética , Secuencia de Aminoácidos/genética , Sitios de Unión , Proteína Tirosina Quinasa CSK , Biología Computacional , Humanos , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/química , Familia-src Quinasas/química
18.
Clin Sci (Lond) ; 130(23): 2217-2237, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27630205

RESUMEN

Diets rich in fruits and vegetables may reduce oxidative stress (OxS) and inflammation via several mechanisms. These beneficial effects may be due to their high polyphenol content. The aims of the present study are to evaluate the preventive and therapeutic aspects of polyphenols in dried apple peel powder (DAPP) on intestinal inflammation while elucidating the underlying mechanisms and clinical benefits. Induction of intestinal inflammation in mice was performed by oral administration of the inflammatory agent dextran sulfate sodium (DSS) at 2.5% for 10 days. Physiological and supraphysiological doses of DAPP (200 and 400 mg/kg/day respectively) were administered by gavage for 10 days pre- and post-DSS treatment. DSS-mediated inflammation caused weight loss, shortening of the colon, dystrophic detachment of the epithelium, and infiltration of mono- and poly-morphonuclear cells in the colon. DSS induced an increase in lipid peroxidation, a down-regulation of antioxidant enzymes, an augmented expression of myeloperoxidase (MPO) and cyclooxygenase-2 (COX-2), an elevated production of prostaglandin E2 (PGE2) and a shift in mucosa-associated microbial composition. However, DAPP normalized most of these abnormalities in preventive or therapeutic situations in addition to lowering inflammatory cytokines while stimulating antioxidant transcription factors and modulating other potential healing pathways. The supraphysiological dose of DAPP in therapeutic situations also improved mitochondrial dysfunction. Relative abundance of Peptostreptococcaceae and Enterobacteriaceae bacteria was slightly decreased in DAPP-treated mice. In conclusion, DAPP exhibits powerful antioxidant and anti-inflammatory action in the intestine and is associated with the regulation of cellular signalling pathways and changes in microbiota composition. Evaluation of preventive and therapeutic effects of DAPP may be clinically feasible in individuals with intestinal inflammatory bowel diseases.


Asunto(s)
Antiinflamatorios/administración & dosificación , Frutas/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Malus/química , Extractos Vegetales/administración & dosificación , Polifenoles/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Ciclooxigenasa 2/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo
19.
Gut ; 64(6): 872-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25080446

RESUMEN

OBJECTIVE: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota. DESIGN: C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. RESULTS: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in our metagenomic samples. CONCLUSIONS: CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp.


Asunto(s)
Enteritis/tratamiento farmacológico , Enteritis/microbiología , Resistencia a la Insulina , Obesidad Abdominal/prevención & control , Extractos Vegetales/farmacología , Vaccinium macrocarpon/química , Verrucomicrobia/efectos de los fármacos , Animales , Dieta Alta en Grasa/efectos adversos , Endotoxemia/etiología , Endotoxemia/prevención & control , Hepatitis/prevención & control , Homeostasis/efectos de los fármacos , Intestinos/microbiología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Lipopolisacáridos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Obesidad Abdominal/etiología , Tamaño de los Órganos/efectos de los fármacos , Polifenoles/análisis , Polifenoles/farmacología , Triglicéridos/metabolismo , Verrucomicrobia/aislamiento & purificación
20.
Sci Rep ; 14(1): 3077, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321177

RESUMEN

Overconsumption of added sugars has been pointed out as a major culprit in the increasing rates of obesity worldwide, contributing to the rising popularity of non-caloric sweeteners. In order to satisfy the growing demand, industrial efforts have been made to purify the sweet-tasting molecules found in the natural sweetener stevia, which are characterized by a sweet taste free of unpleasant aftertaste. Although the use of artificial sweeteners has raised many concerns regarding metabolic health, the impact of purified stevia components on the latter remains poorly studied. The objective of this project was to evaluate the impact of two purified sweet-tasting components of stevia, rebaudioside A and D (RebA and RebD), on the development of obesity, insulin resistance, hepatic health, bile acid profile, and gut microbiota in a mouse model of diet-induced obesity. Male C57BL/6 J mice were fed an obesogenic high-fat/high-sucrose (HFHS) diet and orally treated with 50 mg/kg of RebA, RebD or vehicle (water) for 12 weeks. An additional group of chow-fed mice treated with the vehicle was included as a healthy reference. At weeks 10 and 12, insulin and oral glucose tolerance tests were performed. Liver lipids content was analyzed. Whole-genome shotgun sequencing was performed to profile the gut microbiota. Bile acids were measured in the feces, plasma, and liver. Liver lipid content and gene expression were analyzed. As compared to the HFHS-vehicle treatment group, mice administered RebD showed a reduced weight gain, as evidenced by decreased visceral adipose tissue weight. Liver triglycerides and cholesterol from RebD-treated mice were lower and lipid peroxidation was decreased. Interestingly, administration of RebD was associated with a significant enrichment of Faecalibaculum rodentium in the gut microbiota and an increased secondary bile acid metabolism. Moreover, RebD decreased the level of lipopolysaccharide-binding protein (LBP). Neither RebA nor RebD treatments were found to impact glucose homeostasis. The daily consumption of two stevia components has no detrimental effects on metabolic health. In contrast, RebD treatment was found to reduce adiposity, alleviate hepatic steatosis and lipid peroxidation, and decrease LBP, a marker of metabolic endotoxemia in a mouse model of diet-induced obesity.


Asunto(s)
Adiposidad , Diterpenos de Tipo Kaurano , Glicósidos , Resistencia a la Insulina , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Hígado/metabolismo , Obesidad/metabolismo , Triglicéridos , Dieta Alta en Grasa , Sacarosa/metabolismo , Ácidos y Sales Biliares/metabolismo , Metabolismo de los Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA