Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(3): 950-968, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727401

RESUMEN

Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2 ) and methane (CH4 ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2 , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4  fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.


Asunto(s)
Hielos Perennes , Regiones Árticas , Dióxido de Carbono/análisis , Ecosistema , Plantas , Suelo/química
2.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20210022, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34865532

RESUMEN

Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Asunto(s)
Hielos Perennes , Dióxido de Carbono , Ecosistema , Hidrología , Metano
3.
Environ Microbiol ; 23(1): 340-357, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33185945

RESUMEN

Recent discoveries of mcr and mcr-like genes in genomes from diverse archaeal lineages suggest that methane metabolism is an ancient pathway with a complicated evolutionary history. One conventional view is that methanogenesis is an ancestral metabolism of the class Thermoplasmata. Through comparative genomic analysis of 12 Thermoplasmata metagenome-assembled genomes (MAGs) basal to the Methanomassiliicoccales, we show that these microorganisms do not encode the genes required for methanogenesis. Further analysis of 770 Ca. Thermoplasmatota genomes/MAGs found no evidence of mcrA homologues outside of the Methanomassiliicoccales. Together, these results suggest that methanogenesis was laterally acquired by an ancestor of the Methanomassiliicoccales. The 12 analysed MAGs include representatives from four orders basal to the Methanomassiliicoccales, including a high-quality MAG that likely represents a new order, Ca. Lunaplasma lacustris ord. nov. sp. nov. These MAGs are predicted to use diverse energy conservation pathways, including heterotrophy, sulfur and hydrogen metabolism, denitrification, and fermentation. Two lineages are widespread among anoxic, sedimentary environments, whereas Ca. Lunaplasma lacustris has thus far only been detected in alpine caves and subarctic lake sediments. These findings advance our understanding of the metabolic potential, ecology, and global distribution of the Thermoplasmata and provide insight into the evolutionary history of methanogenesis within the Ca. Thermoplasmatota.


Asunto(s)
Evolución Biológica , Euryarchaeota/metabolismo , Metano/metabolismo , Ecología , Euryarchaeota/clasificación , Euryarchaeota/genética , Euryarchaeota/aislamiento & purificación , Metagenoma , Filogenia
4.
Limnol Oceanogr ; 66(12): 4063-4076, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35874272

RESUMEN

Headwater streams are known sources of methane (CH4) to the atmosphere, but their contribution to global scale budgets remains poorly constrained. While efforts have been made to better understand diffusive fluxes of CH4 in streams, much less attention has been paid to ebullitive fluxes. We examine the temporal and spatial heterogeneity of CH4 ebullition from four lowland headwater streams in the temperate northeastern United States over a 2-yr period. Ebullition was observed in all monitored streams with an overall mean rate of 1.00 ± 0.23 mmol CH4 m-2 d-1, ranging from 0.01 to 1.79 to mmol CH4 m-2 d-1 across streams. At biweekly timescales, rates of ebullition tended to increase with temperature. We observed a high degree of spatial heterogeneity in CH4 ebullition within and across streams. Yet, catchment land use was not a simple predictor of this heterogeneity, and instead patches scale variability weakly explained by water depth and sediment organic matter content and quality. Overall, our results support the prevalence of CH4 ebullition from streams and high levels of variability characteristic of this process. Our findings also highlight the need for robust temporal and spatial sampling of ebullition in lotic ecosystems to account for this high level of heterogeneity, where multiple sampling locations and times are necessary to accurately represent the mean rate of flux in a stream. The heterogeneity observed likely indicates a complex set of drivers affect CH4 ebullition from streams which must be considered when upscaling site measurements to larger spatial scales.

5.
Sensors (Basel) ; 15(9): 21315-26, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343670

RESUMEN

Existing technologies for quantifying methane emissions are often limited to single point sensors, making large area environmental observations challenging. We demonstrate the operation of a remote, multi-path system using Chirped Laser Dispersion Spectroscopy (CLaDS) for quantification of atmospheric methane concentrations over extended areas, a technology that shows potential for monitoring emissions from wetlands.

6.
mSystems ; 9(1): e0069823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38063415

RESUMEN

While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site's methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.IMPORTANCEWetlands are the biggest natural source of atmospheric methane (CH4) emissions, yet we have an incomplete understanding of the suite of microbial metabolism that results in CH4 formation. Specifically, methanogenesis from methylated compounds is excluded from all ecosystem models used to predict wetland contributions to the global CH4 budget. Though recent studies have shown methylotrophic methanogenesis to be active across wetlands, the broad climatic importance of the metabolism remains critically understudied. Further, some methylotrophic bacteria are known to produce methanogenic by-products like acetate, increasing the complexity of the microbial methylotrophic metabolic network. Prior studies of Stordalen Mire have suggested that methylotrophic methanogenesis is irrelevant in situ and have not emphasized the bacterial capacity for metabolism, both of which we countered in this study. The importance of our findings lies in the significant advancement toward unraveling the broader impact of methylotrophs in wetland methanogenesis and, consequently, their contribution to the terrestrial global carbon cycle.


Asunto(s)
Euryarchaeota , Hielos Perennes , Ecosistema , Bacterias/genética , Humedales , Euryarchaeota/metabolismo , Metano/metabolismo
7.
Sci Total Environ ; 809: 152195, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34890668

RESUMEN

Pastures and rangelands are a dominant portion of global agricultural land and have the potential to sequester carbon (C) in soils, mitigating climate change. Management intensive grazing (MIG), or high density grazing with rotations through paddocks with long rest periods, has been highlighted as a method of enhancing soil C in pastures by increasing forage production. However, few studies have examined the soil C storage potential of pastures under MIG in the northeastern United States, where the dairy industry comprises a large portion of agricultural use and the regional agricultural economy. Here we present a 12-year study conducted in this region using a combination of field data and the denitrification and decomposition (DNDCv9.5) model to analyze changes in soil C and nitrogen (N) over time, and the climate impacts as they relate to soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes. Field measurements showed: (1) increases in soil C in grazed fields under MIG (P = 0.03) with no significant increase in hayed fields (P = 0.55); and (2) that the change in soil C was negatively correlated to initial soil C content (P = 0.006). Modeled simulations also showed fields that started with relatively less soil C had significant gains in C over the course of the study, with no significant change in fields with higher initial levels of soil C. Sensitivity analyses showed the physiochemical status of soils (i.e., soil C and clay content) had greater influence over C storage than the intensity of grazing. More extensive grazing methods showed very little change in soil C storage or CO2 and N2O fluxes with modeled continuous grazing trending towards declines in soil C. Our study highlights the importance of considering both initial system conditions as well as management when analyzing the potential for long-term soil C storage.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Granjas , Óxido Nitroso/análisis , Estaciones del Año
8.
Nat Commun ; 12(1): 5815, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611153

RESUMEN

Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles-where methanogens were more abundant-than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.


Asunto(s)
Metano/análisis , Regiones Árticas , Sedimentos Geológicos/análisis , Lagos , Temperatura
9.
Ambio ; 50(2): 375-392, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32920769

RESUMEN

Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.


Asunto(s)
Cambio Climático , Ecosistema , Regiones Árticas , Suelo , Suecia
10.
Anal Chem ; 77(21): 6989-98, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16255600

RESUMEN

An innovative cryogen-free concentrator system for measurement of atmospheric trace gases at the parts per trillion level has been developed with detection by routinely used gas chromatographic methods. The first-generation system was capable of reaching a trapping temperature of -186 degrees C, while the current version can reach -195 degrees C. A Kleemenko cooler is used to create liquid nitrogen equivalent trapping conditions and eliminate the use of solid absorbents, a potential source of artifacts. The method utilizes dual-stage trapping with individual cold regions. The two stages are cooled to -20 and -175 degrees C for water management and sample enrichment, respectively. Both stages house a Silonite-coated stainless steel sample loop; the second stage loop is filled with 1-mm-diameter glass beads, which provide an inert surface area for analyte concentration. In our application, the complete system employed four channels utilizing two flame ionization detectors, one electron capture detector, and a mass spectrometer. The system was automated for unattended operation and was deployed off the New England east coast on Appledore Island to measure a suite of ambient non-methane hydrocarbons, halocarbons, alkyl nitrates, and oxygenated volatile organic compounds during the International Consortium for Atmospheric Research on Transport and Transformation field campaign in summer 2004. This robust system quantified 98 ambient volatile organic compounds with precisions ranging from 0.3 to 15%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA