Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 19(9): 3394-3404, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36001090

RESUMEN

Adenosine (ADO) is an endogenous metabolite with immense potential to be repurposed as an immunomodulatory therapeutic, as preclinical studies have demonstrated in models of epilepsy, acute respiratory distress syndrome, and traumatic brain injury, among others. The currently licensed products Adenocard and Adenoscan are formulated at 3 mg/mL of ADO for rapid bolus intravenous injection, but the systemic administration of the saline formulations for anti-inflammatory purposes is limited by the nucleoside's profound hemodynamic effects. Moreover, concentrations that can be attained in the airway or the brain through direct instillation or injection are limited by the volumes that can be accommodated in the anatomical space (<5 mL in humans) and the rapid elimination by enzymatic and transport mechanisms in the interstitium (half-life <5 s). As such, highly concentrated formulations of ADO are needed to attain pharmacologically relevant concentrations at sites of tissue injury. Herein, we report a previously uncharacterized crystalline form of ADO (rcADO) in which 6.7 mg/mL of the nucleoside is suspended in water. Importantly, the crystallinity is not diminished in a protein-rich environment, as evidenced by resuspending the crystals in albumin (15% w/v). To the best of our knowledge, this is the first report of crystalline ADO generated using a facile and organic solvent-free method aimed at localized drug delivery. The crystalline suspension may be suitable for developing ADO into injectable formulations for attaining high concentrations of the endogenous nucleoside in inflammatory locales.


Asunto(s)
Adenosina Quinasa , Adenosina , Adenosina/química , Adenosina/metabolismo , Adenosina Quinasa/química , Antiinflamatorios , Inhibidores Enzimáticos/uso terapéutico , Humanos , Nucleósidos
2.
Mol Pharm ; 19(7): 2638-2650, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35621214

RESUMEN

Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1ß, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.


Asunto(s)
Biotina , Nanopartículas , Adyuvantes Inmunológicos/química , Animales , Avidina , Células Dendríticas , Ratones , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vacunas de Subunidad/metabolismo
3.
Biotechnol Prog ; : e3474, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647437

RESUMEN

A critical measure of the quality of pharmaceutical proteins is the preservation of native conformations of the active pharmaceutical ingredients. Denaturation of the active proteins in any step before administration into patients could lead to loss of potency and/or aggregation, which is associated with an increased risk of immunogenicity of the products. Interfacial stress enhances protein instability as their adsorption to the air-liquid and liquid-solid interfaces are implicated in the formation of denatured proteins and aggregates. While excipients in protein formulations have been employed to reduce the risk of aggregation, the roles of albumin as a stabilizer have not been reviewed from practical and theoretical standpoints. The amphiphilic nature of albumin makes it accumulate at the interfaces. In this review, we aim to bridge the knowledge gap between interfacial instability and the influence of albumin as a surface-active excipient in the context of reducing the immunogenicity risk of protein formulations.

4.
ACS Appl Bio Mater ; 7(6): 3953-3963, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38805413

RESUMEN

Fibroblastic reticular cells (FRCs) are stromal cells (SCs) that can be isolated from lymph node (LN) biopsies. Studies have shown that these nonhematopoietic cells have the capacity to shape and regulate adaptive immunity and can become a form of personalized cell therapy. Successful translational efforts, however, require the cells to be formulated as injectable units, with their native architecture preserved. The intrinsic reticular organization of FRCs, however, is lost in the monolayer cultures. Organizing FRCs into three-dimensional (3D) clusters would recapitulate their structural and functional attributes. Herein, we report a scaffolding method based on the self-assembling peptide (SAP) EAKII biotinylated at the N-terminus (EAKbt). Cross-linking with avidin transformed the EAKbt fibrils into a dense network of coacervates. The combined forces of fibrillization and bioaffinity interactions in the cross-linked EAKbt likely drove the cells into a cohesive 3D reticula. This facile method of generating clustered FRCs (clFRCs) can be completed within 10 days. In vitro clFRCs attracted the infiltration of T cells and rendered an immunosuppressive milieu in the cocultures. These results demonstrate the potential of clFRCs as a method for stromal cell delivery.


Asunto(s)
Materiales Biocompatibles , Fibroblastos , Humanos , Fibroblastos/citología , Materiales Biocompatibles/química , Ensayo de Materiales , Tamaño de la Partícula , Células Cultivadas , Células del Estroma/citología , Células del Estroma/metabolismo , Péptidos/química
5.
Acta Biomater ; 170: 453-463, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652212

RESUMEN

Generation of protective immunity through vaccination arises from the adaptive immune response developed primarily in the lymph nodes drained from the immunization site. Relative to the intramuscular route, subcutaneous administration allows for direct and rapid access to the lymphatics, but accumulation of soluble protein antigens within the lymph nodes is limited. Subunit vaccines also require immune stimulating adjuvants which may not accumulate in the same lymph nodes simultaneously with antigen. Herein we report the use of biotinylated poly (lactic-co-glycolic acid) nanoparticles (bNPs) to enhance delivery of a model protein antigen to the lymphatics. bNPs provide dual functionality as adjuvant and vehicle to localize antigens with stimulated immune cells in the same draining lymph node. Using streptavidin as a model antigen, which can be loaded directly onto the bNP surface, we evaluated the kinetics of lymph node occupancy and adaptive immune responses in wildtype C57BL/6 mice. Antigen exposure in vivo was significantly improved through surface loading onto bNPs, and we developed a working kinetic model to account for the retention of both particles and antigen in draining lymph nodes. We observed enhanced T cell responses and antigen-specific B cell response in vivo when antigen was delivered on the particle surface. This work highlights the advantage of combining intrinsic adjuvant and antigen loading in a single entity, and the utility of kinetic modeling in the understanding of particle-based vaccines. STATEMENT OF SIGNIFICANCE: Development of safe and effective subunit vaccines depends on effective formulations that render optimized exposure and colocalization of antigens and adjuvants. In this work, we utilize a nanoparticle system which features self-adjuvanting properties and allows for surface loading of recombinant protein antigens. Using in vivo imaging, we demonstrated prolonged co-localization of the antigen and adjuvant particles in draining lymph nodes and provided evidence of B cell activation for up to 21 days following subcutaneous injection. A pharmacokinetic model was developed as a step towards bridging the translational gap between particulate-based vaccines and observed outcomes. The results have implications for the rational design of particle-based vaccines.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36132332

RESUMEN

Herein we report the impact of localized delivery of an anti-mouse PD-1-specific monoclonal antibody (aPD1) on Renca tumors in the resulting T cell responses and changes in broader immune gene expression profiles. Renca is a BALB/c mice syngeneic tumor that has been used to model human renal cell carcinoma In this study, T cell subsets were examined in tumors and draining lymph nodes of mice treated with localized PD-1 with and without the addition of adenosine deaminase (ADA), an enzyme that catabolizes adenosine (ADO), identified as an immune checkpoint in several types of human cancers. The biologics, aPD1, or aPD1 with adenosine deaminase (aPD1/ADA), were formulated with the self-assembling peptides Z15_EAK to enhance retention near the tumor inoculation site. We found that both aPD1 and aPD1/ADA skewed the local immune milieu towards an immune stimulatory phenotype by reducing Tregs, increasing CD8 T cell infiltration, and upregulating IFNÉ£. Analysis of tumor specimens using bulk RNA-Seq confirmed the impact of the localized aPD1 treatment and revealed differential gene expressions elicited by the loco-regional treatment. The effects of ADA and Z15_EAK were limited to tumor growth delay and lymph node enlargement. These results support the notion of expanding the use of locoregional PD-1 blockade in solid tumors.

7.
Urol Oncol ; 39(6): 338-345, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32402767

RESUMEN

In less than 5years immune checkpoint inhibitors (ICI) went from first FDA approval to become first-line options in advanced renal cell carcinoma. Despite that many patients have benefited from ICI, a significant fraction of individuals are refractory to these new immunological treatments. In this review, we discussed using intratumoral (i.t.) route of drug administration as an alternative to systemic therapy to increase the response rates and to circumvent potential drug-induced systemic adverse events. We provided a historic account of i.t. drug treatments in cancer and reviewed the contemporary experience in local drug delivery. We discussed the potential for enhancing the therapeutic impact of ICI by leveraging hydrogels as drug delivery vehicles and presented an outlook for implementing i.t. in renal cell carcinoma.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias Renales/tratamiento farmacológico , Humanos , Inyecciones Intralesiones
8.
Artículo en Inglés | MEDLINE | ID: mdl-36110983

RESUMEN

Chronic wounds caused by diabetes are a significant medical challenge. Complications from non-healing can result in dire consequences for patients and cost the healthcare system billions of dollars annually. Non-healing in wounds for diabetic patient's results from a combination of factors which impair clearing of injured tissue, proliferation of healthy cell populations and increase risk of infection. Wound dressings continue to form the basis for the treatment of chronic wounds. Traditionally, these focused solely on hydration of the wound site and mitigating infection risk. Hydrogel systems are ready made to meet these basic requirements due to their intrinsic hydration properties and ability to deliver active ingredients. Flexibility in materials and methods of release allowed these systems to remain targets of research into the 21st century. Improved understanding of the wound environment and healing cascades has led to the development of more advanced systems which incorporate endogenous growth factors and living cells. Despite their promise, clinical efficacy of these systems has remained a challenge. Further, the regulatory pathways for approval add a layer of complexity to translate pre-clinical work into marketed products. In this review, we discuss systems currently in clinical use, pre-clinical directions and regulatory challenges for hydrogels in the treatment of diabetic chronic wounds.

9.
Macromol Biosci ; 21(4): e2000350, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502824

RESUMEN

EAK16-II (EAK) is a self-assembling peptide (SAP) that forms ß-sheets and ß-fibrils through ionic-complementary interactions at physiological ionic strengths. The soft materials can be injected in vivo, creating depots of drugs and cells for rendering pharmacological and biological actions. The scope of the applications of EAK is sought to extend to tissues through which the flow of extracellular fluid tends to be limited. In such anatomical locales the rate and extent of the fibrilization are limited insofar as drug delivery and cellular scaffolding would be impeded. A method is generated utilizing a carbodiimide cross-linker by which EAK fibrils are pre-assembled yet remain injectable soft materials. It is hypothesized that the resulting de novo covalent linkages enhance the stacking of the ß-sheet bilayers, thereby increasing the lengths of the fibrils and the extent of their cross-linking, as evidenced in Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy, scanning electron microscopy, and atomic force microscopy analyses. The cross-linked EAK (clEAK) retains polymeric microspheres with an average diameter of 1 µm. Macrophages admixed with clEAK remain viable and do not produce the inflammatory mediator interleukin-1ß. These results indicate that clEAK should be investigated further as a platform for delivering particles and cells in vivo.


Asunto(s)
Materiales Biocompatibles/química , Macrófagos/metabolismo , Polímeros/química , Andamios del Tejido/química , Animales , Ácidos Carboxílicos/química , Reactivos de Enlaces Cruzados/química , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Interleucina-10/metabolismo , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microesferas , Péptidos/química , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína , Ratas , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA