Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Rev Neurosci ; 21(11): 625-643, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33024318

RESUMEN

Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated 'treatments' may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Relacionados con Sustancias/fisiopatología , Investigación Biomédica Traslacional , Analgésicos Opioides/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Comportamiento de Búsqueda de Drogas , Recurrencia , Refuerzo en Psicología , Recompensa
2.
Brain Behav Immun ; 115: 535-542, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967660

RESUMEN

During withdrawal from cocaine, calcium permeable-AMPA receptors (CP-AMPAR) progressively accumulate in nucleus accumbens (NAc) synapses, a phenomenon linked to behavioral sensitization and drug-seeking. Recently, it has been suggested that neuroimmune alterations might promote aberrant changes in synaptic plasticity, thus contributing to substance abuse-related behaviors. Here, we investigated the role of microglia in NAc neuroadaptations after withdrawal from cocaine-induced conditioned place preference (CPP). We depleted microglia using PLX5622-supplemented diet during cocaine withdrawal, and after the place preference test, we measured dendritic spine density and the presence of CP-AMPAR in the NAc shell. Microglia depletion prevented cocaine-induced changes in dendritic spines and CP-AMPAR accumulation. Furthermore, microglia depletion prevented conditioned hyperlocomotion without affecting drug-context associative memory. Microglia displayed fewer number of branches, resulting in a reduced arborization area and microglia control domain at late withdrawal. Our results suggest that microglia are necessary for the synaptic adaptations in NAc synapses during cocaine withdrawal and therefore represent a promising therapeutic target for relapse prevention.


Asunto(s)
Cocaína , Síndrome de Abstinencia a Sustancias , Ratas , Animales , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Calcio/metabolismo , Ratas Sprague-Dawley , Microglía/metabolismo , Receptores AMPA/metabolismo
3.
Pharmacol Rev ; 73(3): 1050-1083, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34257149

RESUMEN

Relapse to drug use during abstinence is a defining feature of addiction. During the last several decades, this clinical scenario has been studied at the preclinical level using classic relapse/reinstatement models in which drug seeking is assessed after experimenter-imposed home-cage forced abstinence or extinction of the drug-reinforced responding in the self-administration chambers. To date, however, results from studies using rat relapse/reinstatement models have yet to result in Food and Drug Administration-approved medications for relapse prevention. The reasons for this state of affairs are complex and multifaceted, but one potential reason is that, in humans, abstinence is often self-imposed or voluntary and occurs either because the negative consequences of drug use outweigh the drug's rewarding effects or because of the availability of nondrug alternative rewards that are chosen over the drug. Based on these considerations, we and others have recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking (punishment) or seeking (electric barrier) or by providing mutually exclusive choices between the self-administered drug and nondrug rewards (palatable food or social interaction). In this review, we provide an overview of these translationally relevant relapse models and discuss recent neuropharmacological findings from studies using these models. We also discuss sex as a biological variable, future directions, and clinical implications of results from relapse studies using voluntary abstinence models. Our main conclusion is that the neuropharmacological mechanisms controlling relapse to drug seeking after voluntary abstinence are often different from the mechanisms controlling relapse after home-cage forced abstinence or reinstatement after extinction. SIGNIFICANCE STATEMENT: This review describes recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking or seeking or by providing mutually exclusive choices between the self-administered drug and nondrug rewards. This review discusses recent neuropharmacological findings from studies using these models and discusses future directions and clinical implications.


Asunto(s)
Ansia , Preparaciones Farmacéuticas , Animales , Comportamiento de Búsqueda de Drogas , Humanos , Modelos Animales , Ratas , Recurrencia , Autoadministración
4.
J Neurosci ; 42(50): 9298-9314, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517252

RESUMEN

Until recently, most modern neuroscience research on addiction using animal models did not incorporate manipulations of social factors. Social factors play a critical role in human addiction: social isolation and exclusion can promote drug use and relapse, while social connections and inclusion tend to be protective. Here, we discuss the state of the literature on social factors in animal models of opioid and psychostimulant preference, self-administration, and relapse. We first summarize results from rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of traditional experimenter-controlled social interaction procedures on opioid and psychostimulant conditioned place preference, self-administration, and relapse. Next, we summarize behavioral and brain-mechanism results from studies using newer operant social-interaction procedures that inhibit opioid and psychostimulant self-administration and relapse. We conclude by discussing how the reviewed studies point to future directions for the addiction field and other neuroscience and psychiatric fields, and their implications for mechanistic understanding of addiction and development of new treatments.SIGNIFICANCE STATEMENT In this review, we propose that incorporating social factors into modern neuroscience research on addiction could improve mechanistic accounts of addiction and help close gaps in translating discovery to treatment. We first summarize rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of both traditional experimenter-controlled and newer operant social-interaction procedures. We then discuss potential future directions and clinical implications.


Asunto(s)
Analgésicos Opioides , Estimulantes del Sistema Nervioso Central , Animales , Humanos , Analgésicos Opioides/farmacología , Recompensa , Estimulantes del Sistema Nervioso Central/farmacología , Encéfalo , Recurrencia
5.
Proc Natl Acad Sci U S A ; 117(14): 8126-8134, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205443

RESUMEN

We recently reported that social choice-induced voluntary abstinence prevents incubation of methamphetamine craving in rats. This inhibitory effect was associated with activation of protein kinase-Cδ (PKCδ)-expressing neurons in central amygdala lateral division (CeL). In contrast, incubation of craving after forced abstinence was associated with activation of CeL-expressing somatostatin (SOM) neurons. Here we determined the causal role of CeL PKCδ and SOM in incubation using short-hairpin RNAs against PKCδ or SOM that we developed and validated. We injected two groups with shPKCδ or shCtrlPKCδ into CeL and trained them to lever press for social interaction (6 d) and then for methamphetamine infusions (12 d). We injected two other groups with shSOM or shCtrlSOM into CeL and trained them to lever press for methamphetamine infusions (12 d). We then assessed relapse to methamphetamine seeking after 1 and 15 abstinence days. Between tests, the rats underwent either social choice-induced abstinence (shPKCδ groups) or homecage forced abstinence (shSOM groups). After test day 15, we assessed PKCδ and SOM, Fos, and double-labeled expression in CeL and central amygdala medial division (CeM). shPKCδ CeL injections decreased Fos in CeL PKCδ-expressing neurons, increased Fos in CeM output neurons, and reversed the inhibitory effect of social choice-induced abstinence on incubated drug seeking on day 15. In contrast, shSOM CeL injections decreased Fos in CeL SOM-expressing neurons, decreased Fos in CeM output neurons, and decreased incubated drug seeking after 15 forced abstinence days. Our results identify dissociable central amygdala mechanisms of abstinence-dependent expression or inhibition of incubation of craving.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Ansia/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Relaciones Interpersonales , Animales , Conducta Animal , Modelos Animales de Enfermedad , Humanos , Masculino , Metanfetamina/administración & dosificación , Metanfetamina/efectos adversos , Neuronas/metabolismo , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Sprague-Dawley , Autoadministración , Somatostatina/genética , Somatostatina/metabolismo
6.
J Neurosci ; 40(12): 2485-2497, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32051327

RESUMEN

We recently developed a rat model of relapse to drug seeking after food choice-induced voluntary abstinence. Here, we used this model to study the role of the orbitofrontal cortex (OFC) and its afferent projections in relapse to fentanyl seeking. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed relapse to fentanyl seeking after 13-14 voluntary abstinence days, achieved through a discrete choice procedure between fentanyl infusions and palatable food (20 trials/d). In both sexes, relapse after food choice-induced abstinence was associated with increased expression of the activity marker Fos in the OFC. Pharmacological inactivation of the OFC with muscimol plus baclofen (50 + 50 ng/side) decreased relapse to fentanyl seeking. We then determined projection-specific activation of OFC afferents during the relapse test by using Fos plus the retrograde tracer cholera toxin B (injected into the OFC). Relapse to fentanyl seeking was associated with increased Fos expression in the piriform cortex (Pir) neurons projecting to the OFC, but not in projections from the basolateral amygdala and thalamus. Pharmacological inactivation of the Pir with muscimol plus baclofen decreased relapse to fentanyl seeking after voluntary abstinence. Next, we used an anatomical disconnection procedure to determine whether projections between the Pir and OFC are critical for relapse to fentanyl seeking. Unilateral muscimol plus baclofen injections into the Pir in one hemisphere plus unilateral muscimol plus baclofen injections into the OFC in the contralateral, but not ipsilateral, hemisphere decreased relapse. Our results identify Pir-OFC projections as a new motivation-related pathway critical to relapse to opioid seeking after voluntary abstinence.SIGNIFICANCE STATEMENT There are few preclinical studies of fentanyl relapse, and these studies have used experimenter-imposed extinction or forced abstinence procedures. In humans, however, abstinence is often voluntary, with drug available in the drug environment but forgone in favor of nondrug alternative reinforcers. We recently developed a rat model of drug relapse after palatable food choice-induced voluntary abstinence. Here, we used classical pharmacology, immunohistochemistry, and retrograde tracing to demonstrate a critical role of the piriform and orbitofrontal cortices in relapse to opioid seeking after voluntary abstinence.


Asunto(s)
Analgésicos Opioides , Comportamiento de Búsqueda de Drogas , Fentanilo , Trastornos Relacionados con Opioides/fisiopatología , Trastornos Relacionados con Opioides/psicología , Corteza Piriforme/fisiopatología , Corteza Prefrontal/fisiopatología , Animales , Baclofeno/administración & dosificación , Baclofeno/farmacología , Conducta de Elección , Femenino , Preferencias Alimentarias , Agonistas del GABA/administración & dosificación , Agonistas del GABA/farmacología , Expresión Génica/efectos de los fármacos , Genes fos , Masculino , Microinyecciones , Muscimol/administración & dosificación , Muscimol/farmacología , Ratas , Ratas Sprague-Dawley , Recurrencia , Autoadministración
7.
Addict Biol ; 26(3): e12943, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32683756

RESUMEN

Neuronal ensembles in ventromedial prefrontal cortex (vmPFC) play a role in both cocaine and palatable food seeking. However, it is unknown whether similar or different vmPFC neuronal ensembles mediate food and cocaine seeking. Here, we used the Daun02 inactivation procedure to assess whether the neuronal ensembles mediating food and cocaine seeking can be functionally distinguished. We trained male and female Fos-LacZ rats to self-administer palatable food pellets and cocaine on alternating days for 18 days. We then exposed the rats to a brief nonreinforced food- or cocaine-seeking test to induce Fos and ß-gal in neuronal ensembles associated with food or cocaine seeking, respectively and infused Daun02 into vmPFC to ablate the ß-gal-expressing ensembles. Two days later, we tested the rats for food or cocaine seeking under extinction conditions. Although inactivation of the food-seeking ensemble did not influence food or cocaine seeking, inactivation of the cocaine-seeking ensemble reduced cocaine seeking but not food seeking. Results indicate that the neuronal ensemble activated by cocaine seeking in vmPFC is functionally separate from the ensemble activated by food seeking.


Asunto(s)
Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Extinción Psicológica/fisiología , Neuronas/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Corteza Prefrontal/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Femenino , Masculino , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Autoadministración , Factores de Tiempo
8.
J Neurosci ; 39(13): 2482-2496, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30655356

RESUMEN

We recently developed a mouse model of appetitive operant aggression and reported that adult male outbred CD-1 mice lever-press for the opportunity to attack subordinate male mice and relapse to aggression seeking during abstinence. Here we studied the role of nucleus accumbens (NAc) dopamine receptor (Drd)1- and Drd2-expressing neurons in aggression self-administration and aggression seeking. We trained CD-1 mice to self-administer intruders (9 d, 12 trials/d) and tested them for aggression self-administration and aggression seeking on abstinence Day 1. We used immunohistochemistry and in situ hybridization to measure the neuronal activity marker Fos in the NAc, and cell-type-specific colocalization of Fos with Drd1- and Drd2-expressing neurons. To test the causal role of Drd1- and Drd2-expressing neurons, we validated a transgenic hybrid breeding strategy crossing inbred Drd1-Cre and Drd2-Cre transgenic mice with outbred CD-1 mice and used cell-type-specific Cre-DREADD (hM4Di) to inhibit NAc Drd1- and Drd2-expressing neuron activity. We found that aggression self-administration and aggression seeking induced higher Fos expression in NAc shell than in core, that Fos colocalized with Drd1 and Drd2 in both subregions, and that chemogenetic inhibition of Drd1-, but not Drd2-, expressing neurons decreased aggression self-administration and aggression seeking. Results indicate a cell-type-specific role of Drd1-expressing neurons that is critical for both aggression self-administration and aggression seeking. Our study also validates a simple breeding strategy between outbred CD-1 mice and inbred C57-based Cre lines that can be used to study cell-type and circuit mechanisms of aggression reward and relapse.SIGNIFICANCE STATEMENT Aggression is often comorbid with neuropsychiatric diseases, including drug addiction. One form, appetitive aggression, exhibits symptomatology that mimics that of drug addiction and is hypothesized to be due to dysregulation of addiction-related reward circuits. However, our mechanistic understanding of the circuitry modulating appetitive operant aggression is limited. Here we used a novel mouse model of aggression self-administration and relapse, in combination with immunohistochemistry, in situ hybridization, and chemogenetic manipulations to examine how cell types in the nucleus accumbens are recruited for, and control, operant aggression self-administration and aggression seeking on abstinence Day 1. We found that one population, dopamine receptor 1-expressing neurons, act as a critical modulator of operant aggression reward and aggression seeking.


Asunto(s)
Agresión/fisiología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Receptores de Dopamina D1/fisiología , Animales , Condicionamiento Operante , Masculino , Ratones , Ratones Transgénicos , Receptores de Dopamina D2/fisiología
9.
J Neurosci ; 39(37): 7394-7407, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31331999

RESUMEN

Recent studies suggest that the ventral medial prefrontal cortex (vmPFC) encodes both operant drug self-administration and extinction memories. Here, we examined whether these opposing memories are encoded by distinct neuronal ensembles within the vmPFC with different outputs to the nucleus accumbens (NAc) in male and female rats. Using cocaine self-administration (3 h/d for 14 d) and extinction procedures, we demonstrated that vmPFC was similarly activated (indexed by Fos) during cocaine-seeking tests after 0 (no-extinction) or 7 extinction sessions. Selective Daun02 lesioning of the self-administration ensemble (no-extinction) decreased cocaine seeking, whereas Daun02 lesioning of the extinction ensemble increased cocaine seeking. Retrograde tracing with fluorescent cholera toxin subunit B injected into NAc combined with Fos colabeling in vmPFC indicated that vmPFC self-administration ensembles project to NAc core while extinction ensembles project to NAc shell. Functional disconnection experiments (Daun02 lesioning of vmPFC and acute dopamine D1-receptor blockade with SCH39166 in NAc core or shell) confirm that vmPFC ensembles interact with NAc core versus shell to play dissociable roles in cocaine self-administration versus extinction, respectively. Our results demonstrate that neuronal ensembles mediating cocaine self-administration and extinction comingle in vmPFC but have distinct outputs to the NAc core and shell that promote or inhibit cocaine seeking.SIGNIFICANCE STATEMENT Neuronal ensembles within the vmPFC have recently been shown to play a role in self-administration and extinction of food seeking. Here, we used the Daun02 chemogenetic inactivation procedure, which allows selective inhibition of neuronal ensembles identified by the activity marker Fos, to demonstrate that different ensembles for cocaine self-administration and extinction memories coexist in the ventral mPFC and interact with distinct subregions of the nucleus accumbens.


Asunto(s)
Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Extinción Psicológica/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Masculino , Red Nerviosa/química , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Núcleo Accumbens/química , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Corteza Prefrontal/química , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Transgénicas , Autoadministración
10.
Eur J Neurosci ; 50(3): 2075-2085, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-29779230

RESUMEN

Relapse to non-medical use of prescription opioids often occurs after exposure to places previously associated with drug use. Here, we describe a rat model of context-induced reinstatement of oxycodone seeking after repeated cycles of drug self-administration and extinction-induced abstinence. We also determined the role of mu, delta and kappa opioid receptors (MOR, DOR, KOR) in this reinstatement. We trained rats to self-administer oxycodone for 6 h/day in context A; lever pressing was paired with a discrete cue. Next, we extinguished the lever pressing in the presence of the discrete cue in context B and then tested the rats for reinstatement of oxycodone seeking in both contexts. We retrained rats to self-administer oxycodone in context A, re-extinguished their lever pressing in context B and retested them for reinstatement in both contexts. Prior to testing, we injected the rats with vehicle or antagonists of MOR (naltrexone; 0.5 or 1.0 mg/kg), DOR (naltrindole; 7.5 or 15 mg/kg) or KOR (LY2456302; 5 or 10 mg/kg). We also tested the effect of naltrexone, naltrindole and LY2456302 on oxycodone self-administration under fixed-ratio-1 (FR1) and progressive ratio (PR) reinforcement schedules. We observed context-induced reinstatement of oxycodone seeking after repeated cycles of drug self-administration and extinction. Naltrexone, but not naltrindole or LY2456302, injections decreased this reinstatement. Additionally, naltrexone increased oxycodone self-administration under the FR1 schedule and decreased oxycodone self-administration under the PR schedule; naltrindole and LY2456302 were ineffective. Results demonstrate a critical role of MOR, but not DOR or KOR, in context-induced reinstatement of oxycodone seeking and oxycodone self-administration.


Asunto(s)
Naltrexona/análogos & derivados , Oxicodona/farmacología , Receptores Opioides kappa/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Masculino , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Ratas Sprague-Dawley , Receptores Opioides/efectos de los fármacos
11.
Eur J Neurosci ; 49(2): 165-178, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307667

RESUMEN

Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg per infusion, 3-hr/day, 18 day) or heroin (0.03 mg/kg per infusion) on alternating days (9 day for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex, dorsal striatum, nucleus accumbens, and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells was similar for the heroin and cocaine cue-activated neurons. Overall, the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Cocaína/administración & dosificación , Señales (Psicología) , Comportamiento de Búsqueda de Drogas/fisiología , Heroína/administración & dosificación , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiología , Animales , Condicionamiento Operante , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Modelos Animales de Enfermedad , Extinción Psicológica/efectos de los fármacos , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Corteza Prefrontal , Ratas Long-Evans
12.
J Neurosci ; 37(4): 1014-1027, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123032

RESUMEN

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. SIGNIFICANCE STATEMENT: In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.


Asunto(s)
Cuerpo Estriado/fisiología , Ansia/fisiología , Ingestión de Alimentos/fisiología , Metanfetamina/administración & dosificación , Neuronas/fisiología , Templanza , Animales , Conducta de Elección/efectos de los fármacos , Conducta de Elección/fisiología , Cuerpo Estriado/efectos de los fármacos , Ansia/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/psicología , Femenino , Inyecciones Intraventriculares , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Autoadministración , Templanza/psicología
13.
J Neurosci ; 37(36): 8845-8856, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28779019

RESUMEN

Learned associations between environmental stimuli and rewards drive goal-directed learning and motivated behavior. These memories are thought to be encoded by alterations within specific patterns of sparsely distributed neurons called neuronal ensembles that are activated selectively by reward-predictive stimuli. Here, we use the Fos promoter to identify strongly activated neuronal ensembles in rat prelimbic cortex (PLC) and assess altered intrinsic excitability after 10 d of operant food self-administration training (1 h/d). First, we used the Daun02 inactivation procedure in male FosLacZ-transgenic rats to ablate selectively Fos-expressing PLC neurons that were active during operant food self-administration. Selective ablation of these neurons decreased food seeking. We then used male FosGFP-transgenic rats to assess selective alterations of intrinsic excitability in Fos-expressing neuronal ensembles (FosGFP+) that were activated during food self-administration and compared these with alterations in less activated non-ensemble neurons (FosGFP-). Using whole-cell recordings of layer V pyramidal neurons in an ex vivo brain slice preparation, we found that operant self-administration increased excitability of FosGFP+ neurons and decreased excitability of FosGFP- neurons. Increased excitability of FosGFP+ neurons was driven by increased steady-state input resistance. Decreased excitability of FosGFP- neurons was driven by increased contribution of small-conductance calcium-activated potassium (SK) channels. Injections of the specific SK channel antagonist apamin into PLC increased Fos expression but had no effect on food seeking. Overall, operant learning increased intrinsic excitability of PLC Fos-expressing neuronal ensembles that play a role in food seeking but decreased intrinsic excitability of Fos- non-ensembles.SIGNIFICANCE STATEMENT Prefrontal cortex activity plays a critical role in operant learning, but the underlying cellular mechanisms are unknown. Using the chemogenetic Daun02 inactivation procedure, we found that a small number of strongly activated Fos-expressing neuronal ensembles in rat PLC play an important role in learned operant food seeking. Using GFP expression to identify Fos-expressing layer V pyramidal neurons in prelimbic cortex (PLC) of FosGFP-transgenic rats, we found that operant food self-administration led to increased intrinsic excitability in the behaviorally relevant Fos-expressing neuronal ensembles, but decreased intrinsic excitability in Fos- neurons using distinct cellular mechanisms.


Asunto(s)
Potenciales de Acción/fisiología , Aprendizaje por Asociación/fisiología , Condicionamiento Operante/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Animales , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Transgénicas
14.
Addict Biol ; 22(4): 977-990, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26989042

RESUMEN

In rats trained to self-administer methamphetamine, extinction responding in the presence of drug-associated contextual and discrete cues progressively increases after withdrawal (incubation of methamphetamine craving). The conditioning factors underlying this incubation are unknown. Here, we studied incubation of methamphetamine craving under different experimental conditions to identify factors contributing to this incubation. We also determined whether the rats' response to methamphetamine priming incubates after withdrawal. We trained rats to self-administer methamphetamine in a distinct context (context A) for 14 days (6 hours/day). Lever presses were paired with a discrete light cue. We then tested groups of rats in context A or a different non-drug context (context B) after 1 day, 1 week or 1 month for extinction responding with or without the discrete cue. Subsequently, we tested the rats for reinstatement of drug seeking induced by exposure to contextual, discrete cue, or drug priming (0, 0.25 and 0.5 mg/kg). Operant responding in the extinction sessions in contexts A or B was higher after 1 week and 1 month of withdrawal than after 1 day; this effect was context-independent. Independent of the withdrawal period, operant responding in the extinction sessions was higher when responding led to contingent delivery of the discrete cue. After extinction, discrete cue-induced reinstatement, but not context- or drug priming-induced reinstatement, progressively increased after withdrawal. Together, incubation of methamphetamine craving, as assessed in extinction tests, is primarily mediated by time-dependent increases in non-reinforced operant responding, and this effect is potentiated by exposure to discrete, but not contextual, cues.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Ansia/efectos de los fármacos , Señales (Psicología) , Extinción Psicológica/fisiología , Metanfetamina/farmacología , Síndrome de Abstinencia a Sustancias/fisiopatología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
15.
Eur J Neurosci ; 43(5): 653-61, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26750109

RESUMEN

Amylin is a pancreatic ß-cell hormone that acts as a satiating signal to inhibit food intake by binding to amylin receptors (AMYs) and activating a specific neuronal population in the area postrema (AP). AMYs are heterodimers that include a calcitonin receptor (CTR) subunit [CTR isoform a or b (CTRa or CTRb)] and a member of the receptor activity-modifying proteins (RAMPs). Here, we used single-cell quantitative polymerase chain reaction to assess co-expression of AMY subunits in AP neurons from rats that were injected with amylin or vehicle. Because amylin interacts synergistically with the adipokine leptin to reduce body weight, we also assessed the co-expression of AMY and the leptin receptor isoform b (LepRb) in amylin-activated AP neurons. Single cells were collected from Wistar rats and from transgenic Fos-GFP rats that express green fluorescent protein (GFP) under the control of the Fos promoter. We found that the mRNAs of CTRa, RAMP1, RAMP2 and RAMP3 were all co-expressed in single AP neurons. Moreover, most of the CTRa+ cells co-expressed more than one of the RAMPs. Amylin down-regulated RAMP1 and RAMP3 but not CTR mRNAs in AMY+ neurons, suggesting a possible negative feedback mechanism of amylin at its own primary receptors. Interestingly, amylin up-regulated RAMP2 mRNA. We also found that a high percentage of single cells that co-expressed all components of a functional AMY expressed LepRb mRNA. Thus, single AP cells expressed both AMY and LepRb, which formed a population of first-order neurons that presumably can be directly activated by amylin and, at least in part, also by leptin.


Asunto(s)
Área Postrema/metabolismo , Neuronas/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Receptores de Leptina/metabolismo , Animales , Área Postrema/citología , Retroalimentación Fisiológica , Femenino , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Leptina/farmacología , Masculino , Neuronas/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/genética , Receptores de Leptina/genética
16.
Pharmacol Res ; 104: 22-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26706783

RESUMEN

Ketamine is a drug of abuse with a unique profile, which besides its inherent mechanism of action as a non-competitive antagonist of the NMDA glutamate receptor, displays both antidepressant and reinforcing properties. The major aim of our study was to find a molecular signature of ketamine that may help in discriminating between its reinforcing and antidepressant effects. To this end, we focused our attention on BDNF, a neurotrophin that has been shown to play a role in both antidepressant and reinforcing properties of several drugs. Rats were exposed to self-administer intravenous (IV) ketamine (S/A) for 43 days or to receive a single IV ketamine 0.5mg/kg, or vehicle infusion. Although the dose we employed is lower than that reported by the literature, it however yields Cmax values that correspond to those achieved in humans after antidepressant treatment. Our results show that while the single infusion of ketamine increased the neurotrophin expression in the hippocampus while reducing it in the ventral striatum, a feature shared with other antidepressants, the repeated self-administration reduced mBDNF expression and its downstream signalling in both ventral striatum and hippocampus. Further, we here show that phosphorylation of Akt is oppositely regulated by ketamine, pointing to this pathway as central to the different actions of the drug. Taken together, we here point to BDNF and its downstream signalling pathway as a finely tuned mechanism whose modulation might subserve the different features of ketamine.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ketamina/farmacología , Refuerzo en Psicología , Animales , Antidepresivos/administración & dosificación , Encéfalo/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Infusiones Intravenosas , Ketamina/administración & dosificación , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Autoadministración , Transducción de Señal
17.
Addict Biol ; 20(5): 913-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25582886

RESUMEN

Recent studies have shown that when given a mutually exclusive choice between cocaine and palatable foods, most rats prefer the non-drug rewards over cocaine. Here, we used a discrete choice procedure to assess whether palatable food preference generalizes to rats with a history of limited (3 hours/day) or extended (6 or 9 hours/day) access to methamphetamine self-administration. On different daily sessions, we trained rats to lever-press for either methamphetamine (0.1-0.2 mg/kg/infusion) or palatable food (five pellets per reward delivery) for several weeks; regular food was freely available. We then assessed food-methamphetamine preference either during training, after priming methamphetamine injections (0.5-1.0 mg/kg), following a satiety manipulation (palatable food exposure in the home cage) or after 21 days of withdrawal from methamphetamine. We also assessed progressive ratio responding for palatable food and methamphetamine. We found that independent of the daily drug access conditions and the withdrawal period, the rats strongly preferred the palatable food over methamphetamine, even when they were given free access to the palatable food in the home cage. Intake of methamphetamine and progressive ratio responding for the drug, both of which increased or escalated over time, did not predict preference in the discrete choice test. Results demonstrate that most rats strongly prefer palatable food pellets over intravenous methamphetamine, confirming previous studies using discrete choice procedures with intravenous cocaine. Results also demonstrate that escalation of drug self-administration, a popular model of compulsive drug use, is not associated with a cardinal feature of human addiction of reduced behavioral responding for non-drug rewards.


Asunto(s)
Conducta Animal/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Metanfetamina/farmacología , Animales , Conducta Adictiva , Estimulantes del Sistema Nervioso Central/administración & dosificación , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Operante , Modelos Animales de Enfermedad , Masculino , Metanfetamina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Recompensa , Autoadministración
18.
Artículo en Inglés | MEDLINE | ID: mdl-38453754

RESUMEN

RATIONALE AND OBJECTIVE: We recently introduced a model of operant social reward in which female CD1 mice lever press for access to affiliative social interaction with a cagemate peer mouse of the same sex and strain. Here we determined the generality of the operant social self-administration model to male CD1 mice who, under certain conditions, will lever press to attack a subordinate male mouse. METHODS: We trained male CD1 mice to lever press for food and social interaction with a same sex and strain cagemate peer under different fixed-ratio (FR) schedule response requirements (FR1 to FR6). We then tested their motivation to seek social interaction after 15 days of isolation in the presence of cues previously paired with social self-administration. We also determined the effect of housing conditions on operant social self-administration and seeking. Finally, we determined sex differences in operant social self-administration and seeking, and the effect of housing conditions on unconditioned affiliative and antagonistic (aggressive) social interactions in both sexes. RESULTS: Male CD1 mice lever pressed for access to a cagemate peer under different FR response requirements and seek social interaction after 15 isolation days; these effects were independent of housing conditions. There were no sex differences in operant social self-administration and seeking. Finally, group-housed CD1 male mice did not display unconditioned aggressive behavior toward a peer male CD1 mouse. CONCLUSIONS: Adult socially housed male CD1 mice can be used in studies on operant social reward without the potential confound of operant responding to engage in aggressive interactions.

19.
Neuropsychopharmacology ; 49(4): 731-739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129664

RESUMEN

Social interactions are rewarding and protective against substance use disorders, but it is unclear which specific aspect of the complex sensory social experience drives these effects. Here, we investigated the role of olfactory sensory experience on social interaction, social preference over cocaine, and cocaine craving in rats. First, we conducted bulbectomy on both male and female rats to evaluate the necessity of olfactory system experience on the acquisition and maintenance of volitional social interaction. Next, we assessed the effect of bulbectomy on rats given a choice between social interaction and cocaine. Finally, we evaluated the influence of olfactory sensory experience by training rats on volitional partner-associated odors, assessing their preference for partner odors over cocaine to achieve voluntary abstinence and assessing its effect on the incubation of cocaine craving. Bulbectomy impaired operant social interaction without affecting food and cocaine self-administration. Rats with intact olfactory systems preferred social interaction over cocaine, while rats with impaired olfactory sense showed a preference for cocaine. Providing access to a partner odor in a choice procedure led to cocaine abstinence, preventing incubation of cocaine craving, in contrast to forced abstinence or non-contingent exposure to cocaine and partner odors. Our data suggests the olfactory sensory experience is necessary and sufficient for volitional social reward. Furthermore, the active preference for partner odors over cocaine buffers drug craving. Based on these findings, translational research should explore the use of social sensory-based treatments utilizing odor-focused foundations for individuals with substance use disorders.


Asunto(s)
Cocaína , Trastornos Relacionados con Sustancias , Ratas , Masculino , Femenino , Animales , Preparaciones Farmacéuticas , Odorantes , Ansia , Cocaína/farmacología , Autoadministración
20.
Artículo en Inglés | MEDLINE | ID: mdl-37530881

RESUMEN

RATIONALE: Empathy, or the ability to perceive, share, and act upon the emotions of another, is a crucial social skill and is dysfunctional in autism and schizophrenia. While the complexities of human empathy are difficult to model in rodents, behavioral paradigms utilizing rats which study decision-making in social contexts may provide a translational framework for assessing biological, pharmacotherapeutic, and environmental interventions. OBJECTIVES: Modify and expand upon the three-session rat harm aversion task, which measures the willingness of rats to cease pressing a lever that earns them sucrose reward but delivers a shock to their cage mate. We sought to test the sustainability of harm aversion across seven sessions in male and female rats. METHODS: Same-sex pair-housed rats were assigned as either the observer, which had access to the lever, or the demonstrator, which would receive shocks. After training the observer to press the lever to receive sucrose pellets, the demonstrator was placed into an adjacent chamber at which point lever responses would also deliver a shock. If the observer did not press the lever, no shock and no sucrose was delivered. RESULTS: A sex difference in harm aversion was observed with female rats having significantly higher response rates and decreased response latencies across the seven test sessions, thus delivering more shocks and obtaining more sucrose, relative to males. CONCLUSIONS: These data demonstrate that male rats sustain harm aversion to a greater extent relative to females.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA