Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Microbiol ; 100(5): 877-92, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26879449

RESUMEN

The hybrid cluster protein, Hcp, contains a 4Fe-2S-2O iron-sulfur-oxygen cluster that is currently considered to be unique in biology. It protects various bacteria from nitrosative stress, but the mechanism is unknown. We demonstrate that the Escherichia coli Hcp is a high affinity nitric oxide (NO) reductase that is the major enzyme for reducing NO stoichiometrically to N2 O under physiologically relevant conditions. Deletion of hcp results in extreme sensitivity to NO during anaerobic growth and inactivation of the iron-sulfur proteins, aconitase and fumarase, by accumulated cytoplasmic NO. Site directed mutagenesis revealed an essential role in NO reduction for the conserved glutamate 492 that coordinates the hybrid cluster. The second gene of the hcp-hcr operon encodes an NADH-dependent reductase, Hcr. Tight interaction between Hcp and Hcr was demonstrated. Although Hcp and Hcr purified individually were inactive or when recombined, a co-purified preparation reduced NO in vitro with a Km for NO of 500 nM. In an hcr mutant, Hcp is reversibly inactivated by NO concentrations above 200 nM, indicating that Hcr protects Hcp from nitrosylation by its substrate, NO.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Estrés Fisiológico , Anaerobiosis , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Mutagénesis Sitio-Dirigida , Nitrosación , Operón , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Estrés Fisiológico/genética
2.
Biochem Soc Trans ; 39(1): 213-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21265775

RESUMEN

The ability of enteric bacteria to protect themselves against reactive nitrogen species generated by their own metabolism, or as part of the innate immune response, is critical to their survival. One important defence mechanism is their ability to reduce NO (nitric oxide) to harmless products. The highest rates of NO reduction by Escherichia coli K-12 were detected after anaerobic growth in the presence of nitrate. Four proteins have been implicated as catalysts of NO reduction: the cytoplasmic sirohaem-containing nitrite reductase, NirB; the periplasmic cytochrome c nitrite reductase, NrfA; the flavorubredoxin NorV and its associated oxidoreductase, NorW; and the flavohaemoglobin, Hmp. Single mutants defective in any one of these proteins and even the mutant defective in all four proteins reduced NO at the same rate as the parent. Clearly, therefore, there are mechanisms of NO reduction by enteric bacteria that remain to be characterized. Far from being minor pathways, the currently unknown pathways are adequate to sustain almost optimal rates of NO reduction, and hence potentially provide significant protection against nitrosative stress.


Asunto(s)
Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Estrés Fisiológico , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Mutación , Nitratos/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
3.
J Biotechnol ; 157(3): 391-8, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22202176

RESUMEN

The lac-operon and its components have been studied for decades and it is widely used as one of the common systems for recombinant protein production in Escherichia coli. However, the role of the lactose permease, encoded by the lacY gene, when using the gratuitous inducer IPTG for the overexpression of heterologous proteins, is still a matter of discussion. A lactose permease deficient strain was successfully constructed. Growing profiles and acetate production were compared with its parent strain at shake flask scale. Our results show that the lac-permease deficient strain grows slower than the parent in defined medium at shake flask scale, probably due to a downregulation of the phosphotransferase system (PTS). The distributions of IPTG in the medium and inside the cells, as well as recombinant protein production were measured by HPLC-MS and compared in substrate limiting fed-batch fermentations at different inducer concentrations. For the mutant strain, IPTG concentration in the medium depletes slower, reaching at the end of the culture higher concentration values compared with the parent strain. Final intracellular and medium concentrations of IPTG were similar for the mutant strain, while higher intracellular concentrations than in medium were found for the parent strain. Comparison of the distribution profiles of IPTG of both strains in fed-batch fermentations showed that lac-permease is crucially involved in IPTG uptake. In the absence of the transporter, apparently IPTG only diffuses, while in the presence of lac-permease, the inducer accumulates in the cytoplasm at higher rates emphasizing the significant contribution of the permease-mediated transport.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Isopropil Tiogalactósido/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfotransferasas/metabolismo , Transporte Biológico/fisiología , Técnicas de Cultivo de Célula , Cromatografía Líquida de Alta Presión , Cartilla de ADN/genética , Escherichia coli/metabolismo , Fermentación , Isopropil Tiogalactósido/farmacocinética , Espectrometría de Masas , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Análisis de Secuencia de ADN
4.
FEMS Microbiol Lett ; 325(2): 99-107, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22029434

RESUMEN

Major questions concerning the sources and mechanisms of the reduction of nitric oxide by enteric bacteria remain unresolved. The membrane-associated nitrate reductase is the major source of NO generated from nitrite, but at least one other source remains to be identified. Nitrite reductases are primarily detoxification systems that decrease rather than increase the accumulation of NO in the cytoplasm. Whether they also catalyze NO formation is unresolved. The FNR protein that regulates transitions between aerobic and anaerobic growth is inactivated as a consequence of nitrosative damage, but we challenge the idea that FNR is a physiologically relevant sensor of NO, except under the most severe nitrosative stress. As none of the three enzymes that reduce NO account for the majority of the rate of NO reduction, additional mechanisms remain to be discovered. Little is known about the biochemistry of damage repair. Whatever the growth conditions and however severe the nitrosative stress, groups of proteins are synthesized to protect the bacterial cytoplasm against the side effects of nitrate and nitrite reduction. The enigmatic hybrid cluster protein is more likely to be part of a repair pathway than a hydroxylamine reductase, as annotated in many genome databases.


Asunto(s)
Enterobacteriaceae/metabolismo , Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Estrés Fisiológico , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Nitrosación , Factores de Transcripción/metabolismo
5.
FEMS Microbiol Lett ; 325(2): 108-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22092912

RESUMEN

A ß-galactosidase assay for detecting the accumulation of NO in the Escherichia coli cytoplasm has been developed based on the sensitive response of the transcription repressor, NsrR, to NO. The hcp promoter is repressed by NsrR in the absence of nitric oxide, but repression is relieved when NO accumulates in the cytoplasm. Most, but not all, of this NO is formed by the interaction of the membrane-associated nitrate reductase, NarG, with nitrite. External NO at physiologically relevant concentrations does not equilibrate across the E. coli membrane with NsrR in the cytoplasm. The periplasmic nitrite reductase, NrfAB, is not required to prevent equilibration of NO across the membrane. External NO supplied at the highest concentration reported to occur in vivo does not damage FNR sufficiently to affect transcription from the hcp or hmp promoters or from a synthetic promoter. We suggest that the capacity of E. coli to reduce NO is sufficient to prevent its accumulation from external sources in the cytoplasm.


Asunto(s)
Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Óxido Nítrico/biosíntesis , Factores de Transcripción/metabolismo , Proliferación Celular/efectos de los fármacos , Pruebas de Enzimas/métodos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/metabolismo , Mutación , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitratos/farmacología , Óxido Nítrico/análisis , Óxido Nítrico/farmacología , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Nitritos/farmacología , Regiones Promotoras Genéticas , Estrés Fisiológico , Transcripción Genética/efectos de los fármacos , beta-Galactosidasa/análisis , beta-Galactosidasa/metabolismo
6.
J Microbiol Methods ; 81(1): 77-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20138195

RESUMEN

We show that genomic hybridization allows detection of a spontaneous secondary deletion of 126 genes that occurred during construction of an Escherichia coli ytfE mutant, LMS4209, explaining some of its unexpected growth defects. We confirm that YtfE is required to repair damage to iron-sulfur centres and for hydrogen peroxide resistance.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutación , Hibridación de Ácido Nucleico/métodos , Eliminación de Secuencia , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Peróxido de Hidrógeno/toxicidad , Hierro/metabolismo , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA