Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(9): 3749-3759, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35618886

RESUMEN

The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.


Asunto(s)
Trastorno del Espectro Autista , Fenómenos Biológicos , Humanos , Organoides , Trastorno del Espectro Autista/genética , Proteómica , Proteoma/genética , Fenotipo , Metabolismo Energético
2.
Neurochem Res ; 46(10): 2676-2686, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33710537

RESUMEN

Alterations in neurotransmitter homeostasis, primarily of glutamate and GABA, is strongly implicated in the pathophysiology of Alzheimer's disease (AD). Homeostasis at the synapse is maintained by neurotransmitter recycling between neurons and astrocytes. Astrocytes support neuronal transmission through glutamine synthesis, which can be derived from oxidative metabolism of GABA. However, the precise implications of astrocytic GABA metabolism in AD remains elusive. The aim of this study was to investigate astrocytic GABA metabolism in AD pathology implementing human induced pluripotent stem cells derived astrocytes. Metabolic mapping of GABA was performed with [U-13C]GABA stable isotopic labeling using gas chromatography coupled to mass spectrometry (GC-MS). Neurotransmitter and amino acid content was quantified via high performance liquid chromatography (HPLC) and protein expression was investigated by Western blot assay. Cell lines carrying mutations in either amyloid precursor protein (APP) or presenilin1 (PSEN-1) were used as AD models and were compared to a control cell line of the same genetic background. AD astrocytes displayed a reduced oxidative GABA metabolism mediated by a decreased uptake capacity of GABA, as GABA transporter 3 (GAT3) was downregulated in AD astrocytes compared to the controls. Interestingly, the carbon backbone of GABA in AD astrocytes was utilized to a larger extent to support glutamine synthesis compared to control astrocytes. The results strongly indicate alterations in GABA uptake and metabolism in AD astrocytes linked to reduced GABA transporter expression, hereby contributing further to neurotransmitter disturbances.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Regulación hacia Abajo/fisiología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Mutación , Presenilina-1/genética
3.
Front Aging Neurosci ; 13: 736580, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603012

RESUMEN

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important nitrogen donors for synthesis of glutamate, the main excitatory neurotransmitter in the brain. The glutamate carbon skeleton originates from the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate, while the amino group is derived from nitrogen donors such as the BCAAs. Disturbances in neurotransmitter homeostasis, mainly of glutamate, are strongly implicated in the pathophysiology of Alzheimer's disease (AD). The divergent BCAA metabolism in different cell types of the human brain is poorly understood, and so is the involvement of astrocytic and neuronal BCAA metabolism in AD. The goal of this study is to provide the first functional characterization of BCAA metabolism in human brain tissue and to investigate BCAA metabolism in AD pathophysiology using astrocytes and neurons derived from human-induced pluripotent stem cells (hiPSCs). Mapping of BCAA metabolism was performed using mass spectrometry and enriched [15N] and [13C] isotopes of leucine, isoleucine, and valine in acutely isolated slices of surgically resected cerebral cortical tissue from human brain and in hiPSC-derived brain cells carrying mutations in either amyloid precursor protein (APP) or presenilin-1 (PSEN-1). We revealed that both human astrocytes of acutely isolated cerebral cortical slices and hiPSC-derived astrocytes were capable of oxidatively metabolizing the carbon skeleton of BCAAs, particularly to support glutamine synthesis. Interestingly, hiPSC-derived astrocytes with APP and PSEN-1 mutations exhibited decreased amino acid synthesis of glutamate, glutamine, and aspartate derived from leucine metabolism. These results clearly demonstrate that there is an active BCAA metabolism in human astrocytes, and that leucine metabolism is selectively impaired in astrocytes derived from the hiPSC models of AD. This impairment in astrocytic BCAA metabolism may contribute to neurotransmitter and energetic imbalances in the AD brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA