Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 555(7695): 183-189, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29516996

RESUMEN

Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

2.
ACS Nano ; 13(7): 7545-7555, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31260257

RESUMEN

Chemical functionalization is demonstrated to enhance the p-type electrical performance of two-dimensional (2D) layered tungsten diselenide (WSe2) field-effect transistors (FETs) using a one-step dipping process in an aqueous solution of ammonium sulfide [(NH4)2S(aq)]. Molecularly resolved scanning tunneling microscopy and spectroscopy reveal that molecular adsorption on a monolayer WSe2 surface induces a reduction of the electronic band gap from 2.1 to 1.1 eV and a Fermi level shift toward the WSe2 valence band edge (VBE), consistent with an increase in the density of positive charge carriers. The mechanism of electronic transformation of WSe2 by (NH4)2S(aq) chemical treatment is elucidated using density functional theory calculations which reveal that molecular "SH" adsorption on the WSe2 surface introduces additional in-gap states near the VBE, thereby, inducing a Fermi level shift toward the VBE along with a reduction in the electronic band gap. As a result of the (NH4)2S(aq) chemical treatment, the p-branch ON-currents (ION) of back-gated few-layer ambipolar WSe2 FETs are enhanced by about 2 orders of magnitude, and a ∼6× increase in the hole field-effect mobility is observed, the latter primarily resulting from the p-doping-induced narrowing of the Schottky barrier width leading to an enhanced hole injection at the WSe2/contact metal interface. This (NH4)2S(aq) chemical functionalization technique can serve as a model method to control the electronic band structure and enhance the performance of devices based on 2D layered transition-metal dichalcogenides.

3.
ACS Appl Mater Interfaces ; 9(34): 29255-29264, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28805363

RESUMEN

To fabricate practical devices based on semiconducting two-dimensional (2D) materials, the source, channel, and drain materials are exposed to ambient air. However, the response of layered 2D materials to air has not been fully elucidated at the molecular level. In the present report, the effects of air exposure on transition metal dichalcogenides (TMD) and metal dichalcogenides (MD) are studied using ultrahigh-vacuum scanning tunneling microscopy (STM). The effects of a 1-day ambient air exposure on MBE-grown WSe2, chemical vapor deposition (CVD)-grown MoS2, and MBE SnSe2 are compared. Both MBE-grown WSe2 and CVD-grown MoS2 display a selective air exposure response at the step edges, consistent with oxidation on WSe2 and adsorption of hydrocarbon on MoS2, while the terraces and domain/grain boundaries of both TMDs are nearly inert to ambient air. Conversely, MBE-grown SnSe2, an MD, is not stable in ambient air. After exposure in ambient air for 1 day, the entire surface of SnSe2 is decomposed to SnOx and SeOx, as seen with X-ray photoelectron spectroscopy. Since the oxidation enthalpy of all three materials is similar, the data is consistent with greater oxidation of SnSe2 being driven by the weak bonding of SnSe2.

4.
Nanoscale ; 8(21): 10993-1001, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27174416

RESUMEN

We report the covalent bonding enabled modulation of the interfacial thermal conductance between graphene and metals Cu, Al, and Pt by controlling the oxidation of graphene. By combining comprehensive X-ray photoelectron spectroscopy (XPS) analysis and time-domain thermoreflectance measurements, we quantify the effect of graphene oxidation on interfacial thermal conductance. It was found that thermal conductance increases with the degree of graphene oxidation until a peak value is obtained at an oxygen/carbon atom percentage of ∼7.7%. The maximum enhancement in thermal conductance was measured to be 55%, 38%, and 49% for interfaces between oxidized graphene and Cu, Al, and Pt, respectively. In situ XPS measurements show that oxygen covalently binds to Cu and graphene simultaneously, forming a highly efficient bridge to enhance the thermal transport. Our molecular dynamics simulations verify that strong interfacial covalent bonds are the key to the thermal conductance enhancement. This work provides valuable insights into the mechanism of functionalization-induced thermal conductance enhancement and design guidelines for graphene-based devices.

5.
Sci Rep ; 6: 23708, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025461

RESUMEN

Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth.

6.
ACS Nano ; 10(4): 4258-67, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-26991824

RESUMEN

The effect of air exposure on 2H-WSe2/HOPG is determined via scanning tunneling microscopy (STM). WSe2 was grown by molecular beam epitaxy on highly oriented pyrolytic graphite (HOPG), and afterward, a Se adlayer was deposited in situ on WSe2/HOPG to prevent unintentional oxidation during transferring from the growth chamber to the STM chamber. After annealing at 773 K to remove the Se adlayer, STM images show that WSe2 layers nucleate at both step edges and terraces of the HOPG. Exposure to air for 1 week and 9 weeks caused air-induced adsorbates to be deposited on the WSe2 surface; however, the band gap of the terraces remained unaffected and nearly identical to those on decapped WSe2. The air-induced adsorbates can be removed by annealing at 523 K. In contrast to WSe2 terraces, air exposure caused the edges of the WSe2 to oxidize and form protrusions, resulting in a larger band gap in the scanning tunneling spectra compared to the terraces of air-exposed WSe2 monolayers. The preferential oxidation at the WSe2 edges compared to the terraces is likely the result of dangling edge bonds. In the absence of air exposure, the dangling edge bonds had a smaller band gap compared to the terraces and a shift of about 0.73 eV in the Fermi level toward the valence band. However, after air exposure, the band gap of the oxidized WSe2 edges became about 1.08 eV larger than that of the WSe2 terraces, resulting in the electronic passivation of the WSe2.

7.
ACS Nano ; 10(7): 6888-96, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27305595

RESUMEN

To deposit an ultrathin dielectric onto WSe2, monolayer titanyl phthalocyanine (TiOPc) is deposited by molecular beam epitaxy as a seed layer for atomic layer deposition (ALD) of Al2O3 on WSe2. TiOPc molecules are arranged in a flat monolayer with 4-fold symmetry as measured by scanning tunneling microscopy. ALD pulses of trimethyl aluminum and H2O nucleate on the TiOPc, resulting in a uniform deposition of Al2O3, as confirmed by atomic force microscopy and cross-sectional transmission electron microscopy. The field-effect transistors (FETs) formed using this process have a leakage current of 0.046 pA/µm(2) at 1 V gate bias with 3.0 nm equivalent oxide thickness, which is a lower leakage current than prior reports. The n-branch of the FET yielded a subthreshold swing of 80 mV/decade.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA