Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 84(3): 321-328, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31221070

RESUMEN

Organoids are three-dimensional (3D) cell cultures that replicate some of the key features of morphology, spatial architecture, and functions of a particular organ. Organoids can be generated from both adult and pluripotent stem cells (PSCs), and complex organoids can also be obtained by combining different types of cells, including differentiated cells. The ability of pluripotent cells to self-organize into organotypic structures containing several cell subtypes specific for a particular organ was used for creating organoids of the brain, eye, kidney, intestine, and other organs. Despite the advantages of using PSCs for obtaining organoids, an essential shortcoming that prevents their widespread use has been a low yield when they are obtained from a PSC monolayer culture and a large variation in size. This leads to great heterogeneity on further differentiation. In this article, we describe our own protocol for generating standardized organoids, with emphasis on a method for generating brain organoids, which allows scaling-up experiments and makes their cultivation less expensive and easier.


Asunto(s)
Invenciones , Organoides/citología , Diferenciación Celular , Células Cultivadas , Humanos , Tamaño de la Partícula , Células Madre Pluripotentes/citología , Propiedades de Superficie
2.
Stem Cell Res ; 59: 102648, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026660

RESUMEN

The human induced pluripotent stem cell (iPSC) lines, iCS-MAF1-1 and iCS-MAF1-11, were generated from fibroblasts. The donor has a heterozygous mutation in the VPS13B gene, which manifests in her child as Cohen syndrome. It is a Golgi pathology, characterized by postnatal microcephaly and delayed growth and mental development. However, the process underlying pathological changes leading to the onset of the disease is still unknown. The use of iPSC will allow describing the early stages of neurogenesis, which is undoubtedly relevant for identifying key stages of development, at which phenotypic manifestations of mutations in the VPS13B gene are found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA