Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(48): 13624-13629, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27856759

RESUMEN

The simple process of a liquid wetting a solid surface is controlled by a plethora of factors-surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem.

2.
J Am Chem Soc ; 140(14): 4761-4764, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29589749

RESUMEN

We demonstrate a solution-based fabrication of centimeter-size free-standing films assembled from organic nanocrystals based on common organic dyes (perylene diimides, PDIs). These nanostructured films exhibit good mechanical stability, and thermal robustness superior to most plastics, retaining the crystalline microstructure and macroscopic shape upon heating up to 250-300 °C. The films show nonlinear optical response and can be used as ultrafiltration membranes. The macroscopic functional materials based on small molecules can be alternative or complementary to materials based on macromolecules.

3.
Proc Natl Acad Sci U S A ; 108(50): 19901-6, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22084073

RESUMEN

Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS(2) in the relatively low range of normal stress (0.96 ± 0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces.

4.
J Struct Biol ; 183(2): 149-64, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23707543

RESUMEN

Recent progress made in the field of hierarchical biological materials is reviewed with an emphasis on the staggering characteristics at the smaller structural scale of a number of tissues. We show by means of selected examples that the small-scale architecture, and particularly the degree of staggering and overlap, plays a critical role in the macroscopic elastic behavior of those tissues.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Huesos/anatomía & histología , Huesos/fisiología , Diente/fisiología , Animales , Módulo de Elasticidad/fisiología , Humanos , Modelos Biológicos
5.
Sci Rep ; 13(1): 20416, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989760

RESUMEN

Contemporary designs of engineering structures strive to minimize the use of material in order to reduce cost and weight. However, the approach taken by focusing on materials selection and on the design of the exterior shape of structures has reached its limits. By contrast, nature implements bottom-up designs based on a multiple-level hierarchy, spanning from nanoscale to macroscale, which evolved over millions of years in an environmentally sustainable manner given limited resources. Natural structures often appear as laminates in wood, bone, plants, exoskeletons, etc., and employ elaborate micro-structural mechanisms to generate simultaneous strength and toughness. One such mechanism, observed in the scorpion cuticle and in the sponge spicule, is the grading (gradual change) of properties like layers thickness, stiffness, strength and toughness. We show that grading is a biological design tradeoff, which optimizes the use of material to enhance survival traits such as endurance against impending detrimental cracks. We found that such design, when applied in a more vulnerable direction of the laminate, has the potential to restrain propagation of hazardous cracks by deflecting or bifurcating them. This is achieved by shifting material from non-critical regions to more critical regions, making the design sustainable in the sense of efficient use of building resources. We investigate how such a mechanism functions in nature and how it can be implemented in synthetic structures, by means of a generic analytical model for crack deflection in a general laminate. Such a mechanical model may help optimize the design of bioinspired structures for specific applications and, eventually, reduce material waste.


Asunto(s)
Huesos , Madera , Animales , Escorpiones
6.
Bioinspir Biomim ; 18(3)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36863022

RESUMEN

A crack propagating through a laminate can cause severe structural failure, which may be avoided by deflecting or arresting the crack before it deepens. Inspired by the biology of the scorpion exoskeleton, this study shows how crack deflection can be achieved by gradually varying the stiffness and thickness of the laminate layers. A new generalized multi-layer, multi-material analytical model is proposed, using linear elastic fracture mechanics. The condition for deflection is modeled by comparing the applied stress causing a cohesive failure, resulting in crack propagation, to that causing an adhesive failure, resulting in delamination between layers. We show that a crack propagating in a direction of progressively decreasing elastic moduli is likely to deflect sooner than when the moduli are uniform or increasing. The model is applied to the scorpion cuticle, the laminated structure of which is composed of layers of helical units (Bouligands) with inward decreasing moduli and thickness, interleaved with stiff unidirectional fibrous layers (interlayers). The decreasing moduli act to deflect cracks, whereas the stiff interlayers serve as crack arrestors, making the cuticle less vulnerable to external defects induced by its exposure to harsh living conditions. These concepts may be applied in the design of synthetic laminated structures to improve their damage tolerance and resilience.


Asunto(s)
Biología , Módulo de Elasticidad
7.
ACS Nano ; 17(21): 20962-20967, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37871004

RESUMEN

Development of biodegradable plastic materials is of primary importance in view of acute environmental and health problems associated with the accumulation of plastic waste. We fabricated a biodegradable composite material based on hydroxyethyl cellulose polymer and tyrosine nanocrystals, which demonstrates enhanced strength and ductility (typically mutually excluding properties), superior to most biodegradable plastics. This emergent behavior results from an assembly pattern that leads to a uniform nanoscale morphology and strong interactions between the components. Water-resistant biodegradable composites encapsulated with hydrophobic polycaprolactone as a protection layer were also fabricated. Self-assembly of robust sustainable plastics with emergent properties by using readily available building blocks provides a valuable toolbox for creating sustainable materials.

8.
Phys Rev Lett ; 109(7): 078102, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23006404

RESUMEN

A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue.


Asunto(s)
Huesos/química , Matriz Extracelular/química , Modelos Biológicos , Reticulina/química , Fenómenos Biomecánicos , Huesos/anatomía & histología , Elasticidad , Tendones/anatomía & histología , Tendones/química
9.
ACS Appl Nano Mater ; 5(3): 3654-3666, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35372796

RESUMEN

The molecular orientation in polymer fibers is investigated for the purpose of enhancing their optical properties through nanoscale control by nanowires mixed in electrospun solutions. A prototypical system, consisting of a conjugated polymer blended with polyvinylpyrrolidone, mixed with WO3 nanowires, is analyzed. A critical strain rate of the electrospinning jet is determined by theoretical modeling at which point the polymer network undergoes a stretch transition in the fiber direction, resulting in a high molecular orientation that is partially retained after solidification. Nearing a nanowire boundary, local adsorption of the polymer and hydrodynamic drag further enhance the molecular orientation. These theoretical predictions are supported by polarized scanning near-field optical microscopy experiments, where the dichroic ratio of the light transmitted by the fiber provides evidence of increased orientation nearby nanowires. The addition of nanowires to enhance molecular alignment in polymer fibers might consequently enhance properties such as photoluminescence quantum yield, polarized emission, and tailored energy migration, exploitable in light-emitting photonic and optoelectronic devices and for sensing applications.

10.
J Struct Biol ; 174(1): 23-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20850543

RESUMEN

The local Young modulus of dry dentin viewed as a hierarchical composite was measured by nano-indentation using two types of experiments, both in a continuous stiffness measurement mode. First, tests were performed radially along straight lines running across highly mineralized peritubular dentin sections and through less mineralized intertubular dentin areas. These tests revealed a gradual decrease in Young's modulus from the bulk of the peritubular dentin region where modulus values of up to ∼40-42GPa were observed, down to approximately constant values of ∼17GPa in the intertubular dentin region. A second set of nano-indentation experiments was performed on the facets of an irregular polyhedron specimen cut from the intertubular dentin region, so as to probe the modulus of intertubular dentin specimens at different orientations relative to the tubular direction. The results demonstrated that the intertubular dentin region may be considered to be quasi-isotropic, with a slightly higher modulus value (∼22GPa) when the indenting tip axis is parallel to the tubular direction, compared to the values (∼18GPa) obtained when the indenting tip axis is perpendicular to the tubule direction.


Asunto(s)
Dentina/química , Módulo de Elasticidad , Fenómenos Biomecánicos , Humanos
11.
Nanotechnology ; 22(45): 455706, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22020248

RESUMEN

Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method-by depositing self-assembled monolayers (SMA) of a functional silane on substrates-is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.


Asunto(s)
Nanocompuestos/química , Alcohol Polivinílico/química , Silicatos/química , Rastreo Diferencial de Calorimetría , Calor , Humedad , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Nanocompuestos/ultraestructura , Nanotecnología/métodos
12.
J Nanosci Nanotechnol ; 11(9): 7931-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097508

RESUMEN

Electrospun (ES) nano-scale polymer fibers are known to exhibit lower Young's modulus and strength than their bulk counterpart. We have discovered that minute additions of sodium chloride (NaCl) during the preparation stage of ES polymethyl methacrylate (PMMA) fibers raises the fiber mechanical properties in a significant way, nearly up to bulk values, over a range of diameters. NaCl-induced electrical effects leading to enhanced molecular alignment during nano-fiber formation is the most likely explanation for this synergistic effect. Moreover, beyond the now-recognized rise in Young's modulus values, we observed that the strength and tensile toughness of the ES fibers also significantly increase at progressively smaller diameters.

13.
Bioinspir Biomim ; 16(2)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33307544

RESUMEN

Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.


Asunto(s)
Nácar , Escorpiones , Animales , Anisotropía , Quitina/química , Resistencia al Corte
14.
Nano Lett ; 9(4): 1423-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19351190

RESUMEN

Unusually large deformation is observed in poly(methyl metacrylate) (PMMA) electrospun fibers under tension when multiwall or single-wall carbon nanotubes (MWCNTs and SWCNTs) are included as a second phase in the fibers. These distortions are virtually absent in pure PMMA fibers and stem from markedly different energy dissipation mechanisms and necking modes arising from the dissimilar nanotube morphologies. Thus, both nanotubes types are effective tougheners of PMMA fibers, with an advantage for MWCNTs over SWCNTs.

15.
Nat Commun ; 11(1): 224, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932633

RESUMEN

Helicoidal formations often appear in natural microstructures such as bones and arthropods exoskeletons. Named Bouligands after their discoverer, these structures are angle-ply laminates that assemble from laminae of chitin or collagen fibers embedded in a proteinaceous matrix. High resolution electron microscope images of cross-sections through scorpion claws are presented here, uncovering structural features that are different than so-far assumed. These include in-plane twisting of laminae around their corners rather than through their centers, and a second orthogonal rotation angle which gradually tilts the laminae out-of-plane. The resulting Bouligand laminate unit (BLU) is highly warped, such that neighboring BLUs are intricately intertwined, tightly nested and mechanically interlocked. Using classical laminate analysis extended to laminae tilting, it is shown that tilting significantly enhances the laminate flexural stiffness and strength, and may improve toughness by diverting crack propagation. These observations may be extended to diverse biological species and potentially applied to synthetic structures.


Asunto(s)
Exoesqueleto/ultraestructura , Escorpiones/ultraestructura , Exoesqueleto/anatomía & histología , Exoesqueleto/fisiología , Animales , Anisotropía , Quitina/ultraestructura , Elasticidad , Extremidades/anatomía & histología , Dureza , Microscopía Electrónica , Modelos Biológicos , Modelos Estructurales , Proteínas/ultraestructura , Escorpiones/anatomía & histología
16.
Mater Sci Eng C Mater Biol Appl ; 108: 110505, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923996

RESUMEN

Electrospinning is one of the most investigated methods used to produce polymeric fiber scaffolds that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth. In addition, for applications in smooth muscle tissue engineering, highly elastic scaffolds capable of withstanding cyclic mechanical strains without suffering significant permanent deformations are preferred. In order to address these challenges, we report the fabrication of microscale 3D helically coiled scaffolds (referred as 3D-HCS) by wet-electrospinning method, a modification of the traditional electrospinning process in which a coagulation bath (non-solvent system for the electrospun material) is used as the collector. The present study, for the first time, successfully demonstrates the feasibility of using this method to produce various architectures of 3D helically coiled scaffolds (HCS) from segmented copolyester of poly (butylene succinate-co-dilinoleic succinate) (PBS-DLS), a thermoplastic elastomer. We examined the role of process parameters and propose a mechanism for the HCS formation. Fabricated 3D-HCS showed high specific surface area, high porosity, and good elasticity. Further, the marked increase in cell proliferation on 3D-HCS confirmed the suitability of these materials as scaffolds for soft tissue engineering.


Asunto(s)
Butileno Glicoles/química , Elastómeros , Electroquímica/métodos , Poliésteres/química , Polímeros/química , Andamios del Tejido , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Elasticidad , Imagenología Tridimensional , Ratones , Microscopía Electrónica de Rastreo , Porosidad , Estrés Mecánico , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Microtomografía por Rayos X
17.
Acta Biomater ; 94: 565-573, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31252173

RESUMEN

Since scorpions exist almost all over the world, some expected body differences exist among the species: undoubtedly, the most evident is the shape and size of their pincers or chelae. The scorpion chela is a multifunctional body component (e.g. attack/defense, mating and protection from the environment) that leads to the development of different stresses in the cuticle. How such stresses in the cuticle are accommodated by different chelae shape and size is largely unknown. Here we provide new comparative data on the hierarchical structure and mechanical properties of the chela cuticle in two scorpion species: Scorpio Maurus Palmatus (SP) that has a large chela and Buthus Occitanus Israelis (BO), with a slender chela. We found that the SP exocuticle is composed of four different sublayers whereas the BO exocuticle displays only two sublayers. These structures are different from the exocuticle morphologies in crustaceans, where the Bouligand morphology is present throughout the entire layer. Moreover, the scorpion chela cuticle presents an exclusive structural layer made of unidirectional fibers arranged vertically towards the normal direction of the cuticle. Nanoindentation measurements were performed under dry conditions on transversal and longitudinal planes to evaluate the stiffness and hardness of the different chela cuticle layers in both scorpions. The chela cuticle structure is a key factor towards the decision of the scorpion whether to choose to sting or use the chela for other mechanical functions. STATEMENT OF SIGNIFICANCE: Many arthropods such as lobsters, crabs, stomatopods, isopods, and spiders have been the subject of research in recent years, and their hierarchical structure and mechanical properties extensively investigated. Yet, except for a limited number of pre-1980 publications, comparatively little work has been devoted to the terrestrial scorpion. The scorpion chela is a multifunctional part of the body (e.g. attack/defense, mating and protection from the environment) that involves the development of various stresses in the cuticle. How these stresses in the chela cuticle are managed by different chelae shape and size is still unknown. The lack of a single study that integrates morphological characterization of the entire hierarchical structure of the scorpion chela cuticle, and local mechanical properties, significantly affects the scientific knowledge regarding important structural approaches that can be used by nature to maximize functionality.


Asunto(s)
Exoesqueleto/química , Escorpiones/química , Animales
18.
ACS Nano ; 13(10): 11097-11106, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31403766

RESUMEN

In view of their facile fabrication and recycling, functional materials that are built from small molecules ("molecular plastics") may represent a cost-efficient and sustainable alternative to conventional covalent materials. We show how molecular plastics can be made robust and how their (nano)structure can be tuned via modular construction. For this purpose, we employed binary composites of organic nanocrystals based on a perylene diimide derivative, with graphene oxide (GO), bentonite nanoclay (NC), or hydroxyethyl cellulose (HEC), that both reinforce and enable tailoring the properties of the membranes. The hybrids are prepared via a simple aqueous deposition method, exhibit enhanced mechanical robustness, and can be recycled. We utilized these properties to create separation membranes with tunable porosity that are easy to fabricate and recycle. Hybrids 1/HEC and 1/NC are capable of ultrafiltration, and 1/NC removes heavy metals from water with high efficiency. Hybrid 1/GO shows mechanical properties akin to covalent materials with just 2-10% (by weight) of GO. This hybrid was used as a membrane for immobilizing ß-galactosidase that demonstrated long and stable biocatalytic activity. Our findings demonstrate the utility of modular molecular nanoplastics as robust and sustainable materials that enable efficient tuning of structure and function and are based on self-assembly of readily available inexpensive components.

19.
ACS Appl Mater Interfaces ; 10(19): 16802-16811, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29694781

RESUMEN

The flexural rigidity of cylindrical specimens, composed of epoxy reinforced by short, magnetized glass fibers, was enhanced using weak magnetic fields (<100 mT). By spatially controlling the magnitude and direction of the field, and thereby the torques and forces acting locally on the fibers, the orientation and concentration of the fillers in the matrix could be tuned prior to curing. Unidirectional alignment of the fibers, achieved using an air-core solenoid, improved the contribution of the fibers to the flexure modulus by a factor of 3. When a ring-shaped permanent magnet was utilized, the glass fibers were migrated preferentially near the rod boundary, and as a result, the contribution of the fibers to the flexure modulus doubled. The fiber length, density, and orientation distributions were extracted by µCT image analysis, allowing comparison of the experimental flexure modulus to a modified rule of mixtures prediction. The ability to magnetically control the fiber distribution in reinforced composites demonstrated in this study may be applied in the fabrication of complex micro- and macroscale structures with spatially variable anisotropy, allowing features such as crack diversion, strengthening of highly loaded regions, as well as economic management of materials and weight.

20.
Adv Mater ; 30(5)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29215205

RESUMEN

One major challenge of functional material fabrication is combining flexibility, strength, and toughness. In several biological and artificial systems, these desired mechanical properties are achieved by hierarchical architectures and various forms of anisotropy, as found in bones and nacre. Here, it is reported that crystals of N-capped diphenylalanine, one of the most studied self-assembling systems in nanotechnology, exhibit well-ordered packing and diffraction of sub-Å resolution, yet display an exceptionally flexible nature. To explore this flexibility, the mechanical properties of individual crystals are evaluated, assisted by density functional theory calculations. High-resolution scanning electron microscopy reveals that the crystals are composed of layered self-assembled structures. The observed combination of strength, toughness, and flexibility can therefore be explained in terms of weak interactions between rigid layers. These crystals represent a novel class of self-assembled layered materials, which can be utilized for various technological applications, where a combination of usually contradictory mechanical properties is desired.


Asunto(s)
Péptidos/química , Microscopía Electrónica de Rastreo , Nácar , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA