Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(37): e202408053, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38779788

RESUMEN

Molecules bearing carboxylic acid, amide, and hydroxyl groups are ubiquitous in crystal engineering, where robust hydrogen-bonded synthons centred on these functionalities enable reliable crystal structure design. We now show that halogen bonding to the carbon π-system of such molecules, traditionally ignored in crystal engineering, permits the recognition and directional assembly of the resulting hydrogen-bonded structural subunits, leaving the archetypal hydrogen-bonded ring, ladder, and chain homosynthons intact, but repositioned in space. When applied to heteromolecular synthons, this enables rearranging more complex hydrogen-bonded motifs and the evolution of binary cocrystals into ternary ones through "latent" carbon-based recognition sites, demonstrating a rational approach to build higher-order solid-state supramolecular assemblies.

2.
Angew Chem Int Ed Engl ; : e202404539, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970305

RESUMEN

We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m2 g-1. Mechanochemistry enabled a >20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).

3.
Chem Sci ; 13(14): 3915-3941, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440998

RESUMEN

The field of mechanically interlocked molecules that employ a handcuff component are reviewed. The variety of rotaxane and catenane structures that use the handcuff motif to interlock different components are discussed and a new nomenclature, distilling diverse terminologies to a single approach, is proposed. By unifying the interpretation of this class of molecules we identify new opportunities for employing this structural unit for new architectures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA