Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791456

RESUMEN

Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid ß (Aß) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aß generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.


Asunto(s)
Colesterol , Fibroblastos , Lisosomas , Proteína Niemann-Pick C1 , Presenilina-1 , Presenilina-2 , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Colesterol/metabolismo , Fibroblastos/metabolismo , Glicosilación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Presenilina-2/genética
2.
Brain ; 145(10): 3558-3570, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270003

RESUMEN

Alzheimer's disease is neuropathologically characterized by the deposition of the amyloid ß-peptide (Aß) as amyloid plaques. Aß plaque pathology starts in the neocortex before it propagates into further brain regions. Moreover, Aß aggregates undergo maturation indicated by the occurrence of post-translational modifications. Here, we show that propagation of Aß plaques is led by presumably non-modified Aß followed by Aß aggregate maturation. This sequence was seen neuropathologically in human brains and in amyloid precursor protein transgenic mice receiving intracerebral injections of human brain homogenates from cases varying in Aß phase, Aß load and Aß maturation stage. The speed of propagation after seeding in mice was best related to the Aß phase of the donor, the progression speed of maturation to the stage of Aß aggregate maturation. Thus, different forms of Aß can trigger propagation/maturation of Aß aggregates, which may explain the lack of success when therapeutically targeting only specific forms of Aß.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Humanos , Ratones , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/metabolismo , Ratones Transgénicos , Encéfalo/patología , Modelos Animales de Enfermedad
3.
Nature ; 552(7685): 355-361, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29293211

RESUMEN

The spreading of pathology within and between brain areas is a hallmark of neurodegenerative disorders. In patients with Alzheimer's disease, deposition of amyloid-ß is accompanied by activation of the innate immune system and involves inflammasome-dependent formation of ASC specks in microglia. ASC specks released by microglia bind rapidly to amyloid-ß and increase the formation of amyloid-ß oligomers and aggregates, acting as an inflammation-driven cross-seed for amyloid-ß pathology. Here we show that intrahippocampal injection of ASC specks resulted in spreading of amyloid-ß pathology in transgenic double-mutant APPSwePSEN1dE9 mice. By contrast, homogenates from brains of APPSwePSEN1dE9 mice failed to induce seeding and spreading of amyloid-ß pathology in ASC-deficient APPSwePSEN1dE9 mice. Moreover, co-application of an anti-ASC antibody blocked the increase in amyloid-ß pathology in APPSwePSEN1dE9 mice. These findings support the concept that inflammasome activation is connected to seeding and spreading of amyloid-ß pathology in patients with Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Microglía/metabolismo , Agregación Patológica de Proteínas , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/deficiencia , Precursor de Proteína beta-Amiloide/genética , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Anticuerpos/farmacología , Proteínas Adaptadoras de Señalización CARD/antagonistas & inhibidores , Proteínas Adaptadoras de Señalización CARD/química , Proteínas Adaptadoras de Señalización CARD/inmunología , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Presenilina-1/deficiencia , Presenilina-1/genética , Dominios Proteicos , Memoria Espacial/fisiología
4.
J Biol Chem ; 296: 100631, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33823153

RESUMEN

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/química , Glicoproteínas de Membrana/fisiología , Proteínas Mutantes/metabolismo , Mutación , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Receptores Inmunológicos/fisiología , Enfermedad de Alzheimer , Amiloide/metabolismo , Animales , Ratones , Ratones Noqueados , Proteínas Mutantes/genética , Neuronas/metabolismo , Síndromes de Neurotoxicidad/etiología
5.
Glia ; 70(12): 2290-2308, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35912412

RESUMEN

The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Enfermedad de Alzheimer/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo , Humanos , Ligandos , Microglía/metabolismo , Células Mieloides/metabolismo , Fosfatidilserinas/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo
6.
Glia ; 69(5): 1126-1139, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33314333

RESUMEN

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on myeloid-derived cell types. The extracellular immunoglobulin-like domain of TREM2 binds anionic ligands including Apolipoprotein E and Amyloid-ß. The transmembrane domain interacts with its adaptor protein DAP12/TYROBP that is responsible for propagation of downstream signaling upon ligand interaction. Several sequence variants of TREM2 have been linked to different neurodegenerative diseases including Alzheimer's disease. Here, we generated HEK 293 Flp-In cell lines stably expressing human TREM2 and DAP12 using a bicistronic construct with a T2A linker sequence allowing initial expression of both proteins in stoichiometric amounts. Cell biological and biochemical analyses revealed transport of TREM2 to the cell surface, and canonical sequential proteolytic processing and shedding of TREM2 (sTREM2). The functionality of this cell system was demonstrated by detection of phosphorylated spleen tyrosine kinase (SYK) upon stimulation of TREM2 with the anionic membrane lipid phosphatidylserine or anti-TREM2 antibodies. Using this cell model, we demonstrated impaired signaling of disease associated TREM2 variants. We also identified a monoclonal antibody against the stalk region of TREM2 with agonistic activity. Activation of TREM2-DAP12 signaling with the monoclonal antibody and the partial loss of function of disease associated variants were recapitulated in induced pluripotent stem cell derived microglia. Thus, this reporter cell model represents a suitable experimental system to investigate signaling of TREM2 variants, and for the identification of ligands and compounds that modulate TREM2-DAP12 signaling. MAIN POINTS: Disease associated variants impair the signaling activity of TREM2 by distinct mechanisms. Targeting the stalk region of TREM2 with bivalent antibodies activates TREM2 signaling.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Anticuerpos Monoclonales , Proteínas Portadoras , Células HEK293 , Humanos , Ligandos , Glicoproteínas de Membrana/genética , Células Mieloides , Receptores Inmunológicos/genética
7.
Glia ; 69(12): 2917-2932, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427354

RESUMEN

Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid ß peptides (Aß). Aß peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aß variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aß affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aß, and that phosphorylation of Aß increases this interaction. Phosphorylation of Aß also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aß variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aß species in preclinical models of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
8.
Biochem Biophys Res Commun ; 570: 137-142, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280617

RESUMEN

γ-Secretase is a protease catalysing the proteolysis of type-I membrane proteins usually after precedent ectodomain shedding of the respective protein substrates. Since proteolysis of membrane proteins is involved in fundamental cellular signaling pathways, dysfunction of γ-secretase can have significant impact on cellular metabolism and differentiation. Here, we examined the role of γ-secretase in cellular lipid metabolism using neuronally differentiated human SH-SY5Y cells. The pharmacological inhibition of γ-secretase induced lipid droplet (LD) accumulation. The LD accumulation was significantly attenuated by preventing the accumulation of C-terminal fragment of the amyloid precursor protein (APP-CTF), which is a direct substrate of γ-secretase. Additionally, LD accumulation upon γ-secretase inhibition was not induced in APP-knock out (APP-KO) mouse embryonic fibroblasts (MEFs), suggesting significant involvement of APP-CTF accumulation in LD accumulation upon γ-secretase inhibition. On the other hand, γ-secretase inhibition-dependent cholesterol accumulation was not attenuated by inhibition of APP-CTF accumulation in the differentiated SH-SY5Y cells nor in APP-KO MEFs. These results suggest that γ-secretase inhibition can induce accumulation of LD and cholesterol differentially via APP-CTF accumulation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Gotas Lipídicas/metabolismo , Fragmentos de Péptidos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Colesterol/metabolismo , Ratones
9.
Hum Mutat ; 41(1): 169-181, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31464095

RESUMEN

Rare coding variants in the triggering receptor expressed on myeloid cells-2 (TREM2) gene have been associated with Alzheimer disease (AD) and homozygous TREM2 loss-of-function variants have been reported in families with monogenic frontotemporal-like dementia with/without bone abnormalities. In a whole-exome sequencing study of a family with probable AD-type dementia without pathogenic variants in known autosomal dominant dementia disease genes and negative for the apolipoprotein E (APOE) ε4 allele, we identified an extremely rare TREM2 coding variant, that is, a glycine-to-tryptophan substitution at amino acid position 145 (NM_018965.3:c.433G>T/p.[Gly145Trp]). This alteration is found in only 1 of 251,150 control alleles in gnomAD. It was present in both severely affected as well as in another putatively affected and one 61 years old as yet unaffected family member suggesting incomplete penetrance and/or a variable age of onset. Gly145 maps to an intrinsically disordered region (IDR) of TREM2 between the immunoglobulin-like and transmembrane domain. Subsequent cellular studies showed that the variant led to IDR shortening and structural changes of the mutant protein resulting in an impairment of cellular responses upon receptor activation. Our results, suggest that a p.(Gly145Trp)-induced structural disturbance and functional impairment of TREM2 may contribute to the pathogenesis of an AD-like form of dementia.


Asunto(s)
Demencia/diagnóstico , Demencia/genética , Predisposición Genética a la Enfermedad , Variación Genética , Heterocigoto , Proteínas Intrínsecamente Desordenadas/genética , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Anciano , Alelos , Animales , Línea Celular , Femenino , Estudios de Asociación Genética , Humanos , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , Linaje , Fenotipo , Transporte de Proteínas , Receptores Inmunológicos/metabolismo , Transducción de Señal , Secuenciación del Exoma
10.
Acta Neuropathol ; 140(6): 811-830, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32926214

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid-beta (Aß) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aß deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque's association with clinical disease and perform in-depth immunohistochemical and morphological characterization. The coarse-grained plaque, a relatively large (Ø ≈ 80 µm) deposit, characterized as having multiple cores and Aß-devoid pores, was prominent in the neocortex. The plaque was semi-quantitatively scored in the middle frontal gyrus of Aß-positive cases (n = 74), including non-demented cases (n = 15), early-onset (EO)AD (n = 38), and late-onset (LO)AD cases (n = 21). The coarse-grained plaque was only observed in cases with clinical dementia and more frequently present in EOAD compared to LOAD. This plaque was associated with a homozygous APOE ε4 status and cerebral amyloid angiopathy (CAA). In-depth characterization was done by studying the coarse-grained plaque's neuritic component (pTau, APP, PrPC), Aß isoform composition (Aß40, Aß42, AßN3pE, pSer8Aß), its neuroinflammatory component (C4b, CD68, MHC-II, GFAP), and its vascular attribution (laminin, collagen IV, norrin). The plaque was compared to the classic cored plaque, cotton wool plaque, and CAA. Similar to CAA but different from classic cored plaques, the coarse-grained plaque was predominantly composed of Aß40. Furthermore, the coarse-grained plaque was distinctly associated with both intense neuroinflammation and vascular (capillary) pathology. Confocal laser scanning microscopy (CLSM) and 3D analysis revealed for most coarse-grained plaques a particular Aß40 shell structure and a direct relation with vessels. Based on its morphological and biochemical characteristics, we conclude that the coarse-grained plaque is a divergent Aß plaque-type associated with EOAD. Differences in Aß processing and aggregation, neuroinflammatory response, and vascular clearance may presumably underlie the difference between coarse-grained plaques and other Aß deposits. Disentangling specific Aß deposits between AD subgroups may be important in the search for disease-mechanistic-based therapies.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Angiopatía Amiloide Cerebral/patología , Placa Amiloide/patología , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Capilares/patología , Angiopatía Amiloide Cerebral/genética , Femenino , Humanos , Masculino , Neuritas/patología
11.
Glia ; 67(3): 539-550, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548312

RESUMEN

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activatory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYROBP have been linked to inflammatory neurodegenerative diseases associated with aging. The typical aging process goes along with microglial changes and mild neuronal loss, but the exact contribution of TREM2 is still unclear. Aged TREM2 knock-out mice showed decreased age-related neuronal loss in the substantia nigra and the hippocampus. Transcriptomic analysis of the brains of 24 months old TREM2 knock-out mice revealed 211 differentially expressed genes mostly downregulated and associated with complement activation and oxidative stress response pathways. Consistently, 24 months old TREM2 knock-out mice showed lower transcription of microglial (Aif1 and Tmem119), oxidative stress markers (Inos, Cyba, and Cybb) and complement components (C1qa, C1qb, C1qc, C3, C4b, Itgam, and Itgb2), decreased microglial numbers and expression of the microglial activation marker Cd68, as well as accumulation of oxidized lipids. Cultured microglia of TREM2 knock-out mice showed reduced phagocytosis and oxidative burst. Thus, microglial TREM2 contributes to age-related microglial changes, phagocytic oxidative burst, and loss of neurons with possible detrimental effects during physiological aging.


Asunto(s)
Envejecimiento/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/metabolismo , Factores de Edad , Envejecimiento/genética , Animales , Hipocampo/citología , Hipocampo/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Microglía/citología , Neuronas/citología , Estrés Oxidativo/fisiología , Fagocitosis/fisiología , Receptores Inmunológicos/genética , Sustancia Negra/citología , Sustancia Negra/metabolismo
12.
J Biol Chem ; 291(9): 4334-41, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26694609

RESUMEN

The triggering receptor expressed on myeloid cells (TREM) 2 is a member of the immunoglobulin superfamily of receptors and mediates signaling in immune cells via engagement of its co-receptor DNAX-activating protein of 12 kDa (DAP12). Homozygous mutations in TREM2 or DAP12 cause Nasu-Hakola disease, which is characterized by bone abnormalities and dementia. Recently, a variant of TREM2 has also been associated with an increased risk for Alzheimer disease. The selective expression of TREM2 on immune cells and its association with different forms of dementia indicate a contribution of this receptor in common pathways of neurodegeneration.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Células Mieloides/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Lipodistrofia/genética , Lipodistrofia/inmunología , Lipodistrofia/metabolismo , Lipodistrofia/patología , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Mutación , Células Mieloides/inmunología , Células Mieloides/patología , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/patología , Neuronas/inmunología , Neuronas/patología , Osteocondrodisplasias/genética , Osteocondrodisplasias/inmunología , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Receptores Inmunológicos/genética , Panencefalitis Esclerosante Subaguda/genética , Panencefalitis Esclerosante Subaguda/inmunología , Panencefalitis Esclerosante Subaguda/metabolismo , Panencefalitis Esclerosante Subaguda/patología , Receptor Activador Expresado en Células Mieloides 1
13.
J Biol Chem ; 291(20): 10528-40, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26957541

RESUMEN

The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-ß peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Trehalosa/metabolismo , Trehalosa/farmacología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular , Células HEK293 , Células Hep G2 , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Fragmentos de Péptidos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
J Biol Chem ; 291(31): 16059-67, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27252381

RESUMEN

Neurodegeneration is characterized by the ubiquitous presence of modifications in protein deposits. Despite their potential significance in the initiation and progression of neurodegenerative diseases, the effects of posttranslational modifications on the molecular properties of protein aggregates are largely unknown. Here, we study the Alzheimer disease-related amyloid-ß (Aß) peptide and investigate how phosphorylation at serine 8 affects the structure of Aß aggregates. Serine 8 is shown to be located in a region of high conformational flexibility in monomeric Aß, which upon phosphorylation undergoes changes in local conformational dynamics. Using hydrogen-deuterium exchange NMR and fluorescence quenching techniques, we demonstrate that Aß phosphorylation at serine 8 causes structural changes in the N-terminal region of Aß aggregates in favor of less compact conformations. Structural changes induced by serine 8 phosphorylation can provide a mechanistic link between phosphorylation and other biological events that involve the N-terminal region of Aß aggregates. Our data therefore support an important role of posttranslational modifications in the structural polymorphism of amyloid aggregates and their modulatory effect on neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/química , Agregación Patológica de Proteínas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Medición de Intercambio de Deuterio , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Serina/química , Serina/metabolismo
15.
Glia ; 65(7): 1103-1118, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370426

RESUMEN

The Eph-ephrin system plays pivotal roles in cell adhesion and migration. The receptor-like functions of the ephrin ligands allow the regulation of intracellular processes via reverse signaling. γ-Secretase mediated processing of ephrin-B has previously been linked to activation of Src, a kinase crucial for focal adhesion and podosome phosphorylation. Here, we analyzed the role of γ-secretase in the stimulation of reverse ephrin-B2 signaling in the migration of mouse embryonic stem cell derived microglia. The proteolytic generation of the ephrin-B2 intracellular domain (ICD) by γ-secretase stimulates Src and focal adhesion kinase (FAK). Inhibition of γ-secretase decreased the phosphorylation of Src and FAK, and reduced cell motility. These effects were associated with enlargement of the podosomal surface. Interestingly, expression of ephrin-B2 ICD could rescue these effects, indicating that this proteolytic fragment mediates the activation of Src and FAK, and thereby regulates podosomal dynamics in microglial cells. Together, these results identify γ-secretase as well as ephrin-B2 as regulators of microglial migration.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Movimiento Celular/fisiología , Citoplasma/metabolismo , Efrina-B2/metabolismo , Microglía/citología , Microglía/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Animales Recién Nacidos , Movimiento Celular/genética , Embrión de Mamíferos , Efrina-B2/genética , Quinasa 1 de Adhesión Focal/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Fosforilación , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptor EphB1/metabolismo , Transducción de Señal/genética , Células Madre/fisiología
16.
J Neurochem ; 143(4): 445-454, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28940294

RESUMEN

γ-Secretase is an intramembrane cleaving protease involved in the generation of the Alzheimer's disease (AD)-associated amyloid ß peptide (Aß). γ-Secretase is ubiquitously expressed in different organs, and also in different cell types of the human brain. Besides the involvement in the proteolytic generation of Aß from the amyloid precursor protein, γ-secretase cleaves many additional protein substrates, suggesting pleiotropic functions under physiological and pathophysiological conditions. Microglia exert important functions during brain development and homeostasis in adulthood, and accumulating evidence indicates that microglia and neuroinflammatory processes contribute to the pathogenesis of neurodegenerative diseases. Recent studies demonstrate functional implications of γ-secretase in microglia, suggesting that alterations in γ-secretase activity could contribute to AD pathogenesis by modulation of microglia and related neuroinflammatory processes during neurodegeneration. In this review, we discuss the involvement of γ-secretase in the regulation of microglial functions, and the potential relevance of these processes under physiological and pathophysiological conditions. This article is part of the series "Beyond Amyloid".


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/enzimología , Microglía/enzimología , Enfermedades Neurodegenerativas/enzimología , Animales , Humanos , Inflamación/patología , Microglía/patología , Enfermedades Neurodegenerativas/patología
17.
J Neuroinflammation ; 13: 17, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792193

RESUMEN

BACKGROUND: Triggering receptor expressed on myeloid cells-2 (TREM2) exerts important functions in the regulation of monocytes, like dendritic cells, osteoclasts, tissue macrophages, and microglia. Mutations in TREM2 are associated with several diseases, including Nasu-Hakola disease, frontotemporal dementia, and Alzheimer's disease (AD). TREM2 undergoes sequential proteolytic processing by ectodomain shedding and intramembrane proteolysis. FINDINGS: We show that inhibition of γ-secretase-dependent cleavage of the TREM2 C-terminal fragment in cellular membranes interferes with TREM2-dependent signaling and cellular function. Inhibition of γ-secretase decreases membrane-proximal signaling and intracellular Ca(2+) response. Decreased signaling alters morphological changes and phagocytic activity of cells upon selective stimulation of TREM2. CONCLUSIONS: The data demonstrate the importance of γ-secretase-dependent intramembrane processing in TREM2-mediated signaling and, thus, a functional relation of two AD-associated proteins.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/fisiología , Animales , Células COS , Señalización del Calcio/fisiología , Línea Celular Transformada , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Microglía/metabolismo , Modelos Biológicos , Fagocitosis/fisiología , Receptores Inmunológicos/genética , Factores de Tiempo , Transfección
18.
Biol Chem ; 397(8): 777-90, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27078672

RESUMEN

Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-ß (Aß) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aß generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aß region, thus preventing the generation of N-terminally truncated Aß.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/análisis , Células Cultivadas , Células HEK293 , Humanos , Cinética , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo
20.
Acta Neuropathol ; 131(4): 525-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26898910

RESUMEN

Aggregation and toxicity of the amyloid ß-peptide (Aß) are considered as critical events in the initiation and progression of Alzheimer's disease (AD). Recent evidence indicated that soluble oligomeric Aß assemblies exert pronounced toxicity, rather than larger fibrillar aggregates that deposit in the forms of extracellular plaques. While some rare mutations in the Aß sequence that cause early-onset AD promote the oligomerization, molecular mechanisms that induce the formation or stabilization of oligomers of the wild-type Aß remain unclear. Here, we identified an Aß variant phosphorylated at Ser26 residue (pSer26Aß) in transgenic mouse models of AD and in human brain that shows contrasting spatio-temporal distribution as compared to non-phosphorylated Aß (npAß) or other modified Aß species. pSer26Aß is particularly abundant in intraneuronal deposits at very early stages of AD, but much less in extracellular plaques. pSer26Aß assembles into a specific oligomeric form that does not proceed further into larger fibrillar aggregates, and accumulates in characteristic intracellular compartments of granulovacuolar degeneration together with TDP-43 and phosphorylated tau. Importantly, pSer26Aß oligomers exert increased toxicity in human neurons as compared to other known Aß species. Thus, pSer26Aß could represent a critical species in the neurodegeneration during AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Serina/metabolismo , Factores de Edad , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/genética , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos , Células-Madre Neurales , Neuroblastoma/patología , Fosforilación/genética , Agregado de Proteínas/genética , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA