Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 179(1): 147-164.e20, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539493

RESUMEN

Long-distance RNA transport enables local protein synthesis at metabolically-active sites distant from the nucleus. This process ensures an appropriate spatial organization of proteins, vital to polarized cells such as neurons. Here, we present a mechanism for RNA transport in which RNA granules "hitchhike" on moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an RNA granule-associated phosphoinositide-binding protein, acts as a molecular tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal low complexity domain, facilitating its phase separation into membraneless RNA granules, and a C-terminal membrane binding domain, enabling interactions with lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral sclerosis (ALS)-associated mutations in ANXA11 impair RNA granule transport by disrupting their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA transport by tethering RNA granules to actively-transported lysosomes, performing a critical cellular function that is disrupted in ALS.


Asunto(s)
Anexinas/metabolismo , Transporte Axonal/fisiología , Gránulos Citoplasmáticos/metabolismo , Lisosomas/metabolismo , ARN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Anexinas/genética , Axones/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Mutación , Unión Proteica , Ratas/embriología , Ratas Sprague-Dawley , Transfección , Pez Cebra
2.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677515

RESUMEN

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Asunto(s)
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Unión a ARN/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cationes , Metilación de ADN , Demencia Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteína FUS de Unión a ARN/metabolismo , Tirosina/química , Xenopus laevis
3.
Environ Sci Technol ; 58(6): 2652-2661, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294362

RESUMEN

Micro(nano)plastics (MNPs) are emerging pollutants that can adsorb pollutants in the environment and biological molecules and ultimately affect human health. However, the aspects of adsorption of intracellular proteins onto MNPs and its biological effects in cells have not been investigated to date. The present study revealed that 100 nm polystyrene nanoplastics (NPs) could be internalized by THP-1 cells and specifically adsorbed intracellular proteins. In total, 773 proteins adsorbed onto NPs with high reliability were identified using the proteomics approach and analyzed via bioinformatics to predict the route and distribution of NPs following cellular internalization. The representative proteins identified via the Kyoto Encyclopedia of Genes and Genomes pathway analysis were further investigated to characterize protein adsorption onto NPs and its biological effects. The analysis revealed that NPs affect glycolysis through pyruvate kinase M (PKM) adsorption, trigger the unfolded protein response through the adsorption of ribophorin 1 (RPN1) and heat shock 70 protein 8 (HSPA8), and are chiefly internalized into cells through clathrin-mediated endocytosis with concomitant clathrin heavy chain (CLTC) adsorption. Therefore, this work provides new insights and research strategies for the study of the biological effects caused by NPs.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Contaminantes Químicos del Agua , Humanos , Poliestirenos , Microplásticos , Células THP-1 , Adsorción , Reproducibilidad de los Resultados , Plásticos , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/análisis
4.
J Nanobiotechnology ; 22(1): 362, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910259

RESUMEN

Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Macrófagos , Ratones Endogámicos C57BL , MicroARNs , Nanopartículas , Sepsis , Animales , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Sepsis/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , MicroARNs/metabolismo , Ratones , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Humanos , Masculino , Lipopolisacáridos , Neutrófilos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Multiómica
5.
Artículo en Inglés | MEDLINE | ID: mdl-38430170

RESUMEN

Objective: This study aims to analyze the composition and distribution of pathogenic bacteria in lower respiratory tract infections (LRTI) and their antimicrobial resistance patterns in a hospital in Xinjiang, to guide more effective antibiotic selection and inform clinical management. Methods: We retrospectively analyzed 545 strains isolated from various clinical specimens like sputum and blood, collected between June 2020 and June 2023, using the LIST system. The strains were subjected to drug resistance testing, and statistical analyses included t tests and Chi-square tests. Results: Among gram-negative bacilli, Acinetobacter baumannii dominated, accounting for 32.11%, followed by Pseudomonas aeruginosa, accounting for 18.35%. Among gram-positive bacteria, thrombin-negative staphylococcus was at the top of the list, followed by Staphylococcus aureus. Among Acinetobacter baumannii (AB), carbapenem-resistant Acinetobacter baumannii plays a dominant role. The sensitivity rate of these strains to tigecycline and amikacin could reach more than 80%. The sensitivity of Pseudomonas aeruginosa (PA) to piperacillin, gentamicin, imipenem, meropenem, ciprofloxacin and levofloxacin ranged from 50% to 80%. It is worth mentioning that the sensitivity rate of PA to amikacin, cefoperazone, and tobramycin exceeded 80%. Amikacin was more than 60% sensitive to carbapenem, ß-lactam inhibitors, tigecycline, quinolones, and aminoglycosides of ESBL producing Klebsiella pneumoniae. Among gram-positive coccus, methicillin-resistant coagulase-negative staphylococcus was 100% sensitive to duration, e, tigecycline, and vancomycin. In addition, the susceptibility rate of these strains to rifampicin and linezolid was greater than 70%. Conclusions: In patients with lower respiratory tract infection (LRTI) in a hospital in Xinjiang, the most common pathogenic bacteria are gram-negative bacilli, mainly Acinetobacter baumannii and Pseudomonas aeruginosa. Both resistant and non-resistant strains showed sensitivity to amikacin and tigecycline. Additionally, staphylococcus accounted for half of the total number of gram-positive bacteria, among which methicillin-resistant strains were more sensitive to vancomycin and linezolid.

6.
Nanotechnology ; 34(46)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37499636

RESUMEN

To obtain a magnetically separable, low-cost and highly efficient reduction catalyst, microbial carbon-loaded bimetallic palladium/iron nanoparticles (MC-FePd3NPs) were synthesized in this study by using waste yeast residue doped with iron during the preparation process of microbial carbon-loaded monometallic palladium nanoparticles (MC-Pd NPs). The morphology, crystal structure, magnetic properties and catalytic performance of MC-FePd3NPs for the reduction ofp-nitrophenol (p-NP) were investigated by various characterization techniques, such as SEM-EDS, TEM, XRD, PPMS-9 and UV-vis spectroscopy. The catalytic experiments showed that the MC-FePd3NPs prepared under pyrolysis conditions at 700 °C had an apparent rate constant of 1.85 × 10-1s-1which is better than the rate constants of MC-Pd NPs and other palladium-based nanocatalytic materials reported so far. The amount of palladium used in the synthesis of MC-FePd3NPs was half that of MC-Pd NPs. The catalyst exhibited soft magnetic ordering behavior and still showed a catalytic efficiency of 97.4% after five consecutive reaction cycles. Furthermore, employing MC-FePd3NPs reduces the costs of catalyst preparation and use in production. MC-FePd3NPs with efficient catalytic properties, facile magnetic separation and recyclability, and low costs of preparation and use have considerable potential for industrial applications.

7.
BMC Infect Dis ; 23(1): 473, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461015

RESUMEN

BACKGROUND AND AIM: Dengue fever, transmitted by Aedes mosquitoes, is a significant public health concern in tropical and subtropical regions. With the end of the COVID-19 pandemic and the reopening of the borders, dengue fever remains a threat to mainland China, Zhejiang province of China is facing a huge risk of importing the dengue virus. This study aims to analyze and predict the current and future potential risk regions for Aedes vectors distribution and dengue prevalence in Zhejiang province of China. METHOD: We collected occurrence records of DENV and DENV vectors globally from 2010 to 2022, along with historical and future climate data and human population density data. In order to predict the probability of DENV distribution in Zhejiang province of China under future conditions, the ecological niche of Ae. aegypti and Ae. albopictus was first performed with historical climate data based on MaxEnt. Then, predicted results along with a set of bioclimatic variables, elevation and human population density were included in MaxEnt model to analyze the risk region of DENV in Zhejiang province. Finally, the established model was utilized to predict the spatial pattern of DENV risk in the current and future scenarios in Zhejiang province of China. RESULTS: Our findings indicated that approximately 89.2% (90,805.6 KM2) of Zhejiang province of China is under risk, within about 8.0% (8,144 KM2) classified as high risk area for DENV prevalence. Ae. albopictus were identified as the primary factor influencing the distribution of DENV. Future predictions suggest that sustainable and "green" development pathways may increase the risk of DENV prevalence in Zhejiang province of China. Conversely, Fossil-fueled development pathways may reduce the risk due to the unsuitable environment for vectors. CONCLUSIONS: The implications of this research highlight the need for effective vector control measures, community engagement, health education, and environmental initiatives to mitigate the potential spread of dengue fever in high-risk regions of Zhejiang province of China.


Asunto(s)
Aedes , COVID-19 , Virus del Dengue , Dengue , Animales , Humanos , Virus del Dengue/genética , Mosquitos Vectores , Pandemias , COVID-19/epidemiología , China/epidemiología , Dengue/epidemiología
8.
J Immunol ; 207(8): 2118-2128, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34507947

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysfunctional host response to infection. Neutrophils play a protective role by releasing antibacterial proteins or by phagocytizing bacteria. However, excess neutrophils can induce tissue damage. Recently, a novel intercellular communication pathway involving extracellular vesicles (EVs) has garnered considerable attention. However, whether EVs secreted by macrophages mediate neutrophil recruitment to infected sites has yet to be studied. In this study, we assessed the chemotactic effect of EVs isolated from mouse Raw264.7 macrophages on mouse neutrophils and found that CXCL2 was highly expressed in these EVs. By regulating CXCL2 in Raw264.7 macrophages, we found that CXCL2 on macrophage EVs recruited neutrophils in vitro and in vivo. The CXCL2 EVs activated the CXCR2/PKC/NOX4 pathway and induced tissue damage. This study provides information regarding the mechanisms underlying neutrophil recruitment to tissues and proposes innovative strategies and targets for the treatment of sepsis.


Asunto(s)
Quimiocina CXCL2/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/inmunología , NADPH Oxidasa 4/metabolismo , Neutrófilos/inmunología , Proteína Quinasa C/metabolismo , Sepsis/inmunología , Animales , Ciego/cirugía , Modelos Animales de Enfermedad , Enfermedades del Sistema Inmune , Trastornos Leucocíticos , Ratones , Ratones Endogámicos C57BL , Activación Neutrófila , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 117(40): 24757-24763, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958681

RESUMEN

We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a computational method using motivic homotopy theory, viewed as a deformation of classical homotopy theory. This yields a streamlined computation of the first 61 stable homotopy groups and gives information about the stable homotopy groups in dimensions 62 through 90. As an application, we determine the groups of homotopy spheres that classify smooth structures on spheres through dimension 90, except for dimension 4. The method relies more heavily on machine computations than previous methods and is therefore less prone to error. The main mathematical tool is the Adams spectral sequence.

10.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887400

RESUMEN

Biological self-assembly procedures, which are generally carried out in an aqueous solution, have been found to be the most promising method for directing the fabrication of diverse nanothermites, including Al/CuO nanothermite. However, the aqueous environment in which Al nanoparticles self-assemble has an impact on their stability. We show that using a peptide to self-assemble Al or CuO nanoparticles considerably improves their durability in phosphate buffer aqueous solution, with Al and CuO nanoparticles remaining intact in aqueous solution for over 2 weeks with minimal changes in the structure. When peptide-assembled Al/CuO nanothermite was compared with a physically mixed sample in phosphate buffer for 30 min, the energy release of the former was higher by 26%. Furthermore, the energy release of peptide-assembled Al/CuO nanocomposite in phosphate buffer showed a 6% reduction by Day 7, while that of the peptide-assembled Al/CuO nanocomposite in ultrapure water was reduced by 75%. Taken together, our study provides an easy method for keeping the thermal activity of Al/CuO nanothermite assembled in aqueous solution.


Asunto(s)
Cobre , Nanocompuestos , Cobre/química , Nanocompuestos/química , Péptidos , Fosfatos , Agua
11.
Water Sci Technol ; 86(7): 1629-1641, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36240300

RESUMEN

Coking wastewater has a complex and highly concentrated chemical composition which is toxic and does not biodegrade easily. Treating the organic pollutants in this wastewater is very challenging. The toxic substances in this wastewater make traditional biotechnological treatments inefficient. Current wastewater treatment studies are based on unit processes, and no full process studies could be found. This study used the micro-nanometer catalytic ozonation process as a pretreatment unit, and reverse osmosis membrane treatment as a depth processing unit to improve the effect of the coking wastewater degradation. The micro-nanometer catalytic ozonation pretreatment greatly improves the biodegradability of the coking wastewater and promotes the coking wastewater degradation in the anoxia/anaerobic/oxic (A/A/O) system. The integrated coagulation air flotation-micro-nanometer catalytic ozonation-A/A/O-reverse osmosis membrane system can remove 98% of the chemical oxygen demand, which meets the direct emission standard of the new national standard (China). The dominant genera in the A/A/O biochemical reactor were Thioalkalimicrobium, Proteiniphilum, Azoarcu, Bacillus, Fontibacter, and Taibaiella. This work provides a novel approach for the degradation of high-concentration organic wastewater and lays a solid foundation for the restoration of environmental water bodies.


Asunto(s)
Coque , Contaminantes Ambientales , Ozono , Contaminantes Químicos del Agua , Coque/análisis , Humanos , Hipoxia , Ósmosis , Ozono/química , Eliminación de Residuos Líquidos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis
12.
Hum Mol Genet ; 28(R2): R187-R196, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31595953

RESUMEN

Recent work on the biophysics of proteins with low complexity, intrinsically disordered domains that have the capacity to form biological condensates has profoundly altered the concepts about the pathogenesis of inherited and sporadic neurodegenerative disorders associated with pathological accumulation of these proteins. In the present review, we use the FUS, TDP-43 and A11 proteins as examples to illustrate how missense mutations and aberrant post-translational modifications of these proteins cause amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD).


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Anexinas/genética , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/genética , Proteína FUS de Unión a ARN/química , Lóbulo Temporal/fisiopatología , Anexinas/química , Anexinas/metabolismo , Transporte Biológico/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Mutación Missense , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/química , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
13.
Nanotechnology ; 32(6): 065701, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33210616

RESUMEN

In recent years, the pyrolysis of microbial biomasses that adsorb various metal ions has enabled the preparation of carbon-based polymetallic nanomaterials with excellent electrocatalytic and electrical energy storage properties. However, the preparation of ozone catalysts by this technique and the corresponding catalytic oxidation mechanism are still unclear. In this study, an Escherichia coli strain (BL21) was used for tetra-metal (Cu, Fe, Mn and Al) absorption and the obtained microbial biomass was pyrolyzed under the protection of a nitrogen flow at 700 °C and activated at 900 °C to prepare a microbial-char-based tetra-metal ozone catalyst (MCOC). This was used to degrade phenol and coking wastewater and exhibited a strong catalytic capability for coking wastewater, whose chemical oxygen demand removal efficiency of 70.86% is 16.7% higher than that of pure ozone and 14.67%, 7.21% and 3.58% higher than that of three commercial catalysts, respectively. It also improved the efficiency of ozonation for phenol by 33%. The MCOC was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive spectroscopy, transmission electron microscopy and other methods. The results demonstrated that the spherical metal nanoparticles had sizes ranging from 3 nm to 7 nm and that crystals of Fe2O3 and Fe3P were observed. The study showed that the MCOC promoted the production of more hydroxyl radicals and superoxides from ozone, which attack organics. The oxygen vacancies of the catalyst were also investigated. It was proved that the Lewis acid sites on the surface of metal oxides are the active centers of ozone decomposition. Therefore, this work provides a new method for the synthesis of multi-metal nanocomposites and expands the application of biosynthetic nanomaterials.


Asunto(s)
Escherichia coli/química , Nanopartículas del Metal/química , Ozono/química , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Catálisis , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oxígeno/química , Fenoles/química , Espectroscopía de Fotoelectrones , Pirólisis , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Aguas Residuales/química
14.
Proc Natl Acad Sci U S A ; 114(13): E2634-E2643, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28292898

RESUMEN

Protein aggregation is involved in many diseases. Often, a unique aggregation-prone sequence polymerizes to form regular fibrils. Many oncogenic mutants of the tumor suppressor p53 rapidly aggregate but form amorphous fibrils. A peptide surrounding Ile254 is proposed to be the aggregation-driving sequence in cells. We identified several different aggregating sites from limited proteolysis of harvested aggregates and effects of mutations on kinetics and products of aggregation. We present a model whereby the amorphous nature of the aggregates results from multisite branching of polymerization after slow unfolding of the protein, which may be a common feature of aggregation of large proteins. Greatly lowering the aggregation propensity of any one single site, including the site of Ile254, by mutation did not inhibit aggregation in vitro because aggregation could still occur via the other sites. Inhibition of an individual site is, accordingly, potentially unable to prevent aggregation in vivo. However, cancer cells are specifically killed by peptides designed to inhibit the Ile254 sequence and further aggregation-driving sequences that we have found. Consistent with our proposed mechanism of aggregation, we found that such peptides did not inhibit aggregation of mutant p53 in vitro. The cytotoxicity was not eliminated by knockdown of p53 in 2D cancer cell cultures. The peptides caused rapid cell death, much faster than usually expected for p53-mediated transcription-dependent apoptosis. There may also be non-p53 targets for those peptides in cancer cells, such as p63, or the peptides may alter other interactions of partly denatured p53 with receptors.


Asunto(s)
Agregación Patológica de Proteínas , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Modelos Teóricos , Mutación , Neoplasias/genética , Dominios Proteicos , Proteína p53 Supresora de Tumor/química
15.
Proteomics ; 19(3): e1800274, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30474914

RESUMEN

Exosomes are typically involved in cellular communication and signaling. Macrophages play a key role in lipopolysaccharide (LPS)-induced sepsis. However, the molecular comparison of exosomes derived from LPS-induced macrophage has not been well analyzed. The macrophage-exosomes are validated and the protein composition of those exosomes are investigated by isobaric tags for relative and absolute quantification (iTRAQ) mass spectrometry. A total of 5056 proteins are identified in macrophage-exosomes. We discovered 341 increased proteins and 363 reduced proteins in LPS-treated macrophage-exosomes compared with control exosomes. In addition, gene ontology analysis demonstrates that macrophage-exosomes proteins are mostly linked to cell, organelle, extracellular region, and membrane. The bioinformatics analysis also indicates that these proteins are mainly involved in cellular process, single-organism process, metabolic process, and biological regulation. Among these 341 upregulated proteins, Kyoto Encyclopedia of Genes and Genomes analysis reveals that 22 proteins are involved in the NOD-like receptor signaling pathway. Finally, hepatocytes can uptake macrophage-exosomes and subsequently NLRP3 inflammasome is activated in vitro and in vivo. These data emphasize the fundamental importance of macrophage-exosomes in sepsis-induced liver injury. Therefore, the iTRAQ proteomic strategy brings new insights into macrophage-derived exosomes. It may improve our understanding of macrophage-exosomes' functions and their possible use as therapeutic targets for sepsis.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Exosomas/inmunología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Proteínas/inmunología , Lesión Pulmonar Aguda/patología , Animales , Exosomas/patología , Hepatocitos/inmunología , Hepatocitos/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas/análisis , Proteómica , Células RAW 264.7
16.
J Cell Physiol ; 234(4): 4668-4680, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30246378

RESUMEN

Arecoline induces oral submucous fibrosis (OSF) via promoting the reactive oxygen species (ROS). Angiotensin (1-7) (Ang-(1-7)) protects against fibrosis by counteracting angiotensin II (Ang-II) via the Mas receptor. However, the effects of Ang-(1-7) on OSF remain unknown. NOD-like receptors (NLRs) family pyrin domain containing 3 (NLRP3) inflammasome is identified as the novel mechanism of fibrosis. Whereas the effects of arecoline on NLRP3 inflammasome remain unclear. We aimed to explore the effect of Ang-(1-7) on NLRP3 inflammasome in human oral myofibroblasts. In vivo, activation of NLRP3 inflammasomes with an increase of Ang-II type 1 receptor (AT1R) protein level and ROS production in human oral fibrosis tissues. Ang-(1-7) improved arecoline-induced rats OSF, reduced protein levels of NADPH oxidase 4 (NOX4) and the NLRP3 inflammasome. In vitro, arecoline increased ROS along with upregulation of the angiotensin-converting enzyme (ACE)/Ang-II/AT1R axis and NLRP3 inflammasome/interleukin-1ß axis in human oral myofibroblasts, which were reduced by NOX4 inhibitor VAS2870, ROS scavenger N-acetylcysteine, and NOX4 small interfering RNA (siRNA). Furthermore, arecoline induced collagen synthesis or migration via the Smad or RhoA-ROCK pathway respectively, which could be inhibited by NLRP3 siRNA or caspase-1 blocker VX-765. Ang-(1-7) shifted the balance of RAS toward the ACE2/Ang-(1-7)/Mas axis, inhibited arecoline-induced ROS and NLRP3 inflammasome activation, leading to attenuation of migration or collagen synthesis. In summary, Ang-(1-7) attenuates arecoline-induced migration and collagen synthesis via inhibiting NLRP3 inflammasome in human oral myofibroblasts.


Asunto(s)
Angiotensina I/farmacología , Antiinflamatorios/farmacología , Arecolina/toxicidad , Movimiento Celular/efectos de los fármacos , Colágeno/biosíntesis , Miofibroblastos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/agonistas , Fibrosis de la Submucosa Bucal/prevención & control , Fragmentos de Péptidos/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Antioxidantes/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Miofibroblastos/metabolismo , Miofibroblastos/patología , NADPH Oxidasa 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fibrosis de la Submucosa Bucal/inducido químicamente , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Peptidil-Dipeptidasa A/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Piroptosis/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 112(8): 2437-42, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675526

RESUMEN

Many oncogenic mutations inactivate the tumor suppressor p53 by destabilizing it, leading to its rapid aggregation. Small molecule drugs are being developed to stabilize such mutants. The kinetics of aggregation of p53 is deceptively simple. The initial steps in the micromolar concentration range follow apparent sigmoidal sequential first-order kinetics, with rate constants k1 and k2. However, the aggregation kinetics of a panel of mutants prepared for Φ-value analysis has now revealed a bimolecular reaction hidden beneath the observed first-order kinetics. Φu measures the degree of local unfolding on a scale of 0-1. A number of sequential Φu-values of ∼1 for k1 and k2 over the molecule implied more than one protein molecule must be reacting, which was confirmed by finding a clear concentration dependence at submicromolar protein. Numerical simulations showed that the kinetics of the more complex mechanism is difficult, if not impossible, to distinguish experimentally from simple first order under many reaction conditions. Stabilization of mutants by small molecules will be enhanced because they decrease both k1 and k2. The regions with high Φu-values point to the areas where stabilization of mutant proteins would have the greatest effect.


Asunto(s)
Agregado de Proteínas , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Benzotiazoles , Fenómenos Biofísicos , Simulación por Computador , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína , Tiazoles/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(8): 2443-8, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675527

RESUMEN

Destabilized mutant p53s coaggregate with WT p53, p63, and p73 in cancer cell lines. We found that stoichiometric amounts of aggregation-prone mutants induced only small amounts of WT p53 to coaggregate, and preformed aggregates did not significantly seed the aggregation of bulk protein. Similarly, p53 mutants trapped only small amounts of p63 and p73 into their p53 aggregates. Tetrameric full-length protein aggregated at similar rates and kinetics to isolated core domains, but there was some induced aggregation of WT by mutants in hetero-tetramers. p53 aggregation thus differs from the usual formation of amyloid fibril or prion aggregates where tiny amounts of preformed aggregate rapidly seed further aggregation. The proposed aggregation mechanism of p53 of rate-determining sequential unfolding and combination of two molecules accounts for the difference. A molecule of fast-unfolding mutant preferentially reacts with another molecule of mutant and only occasionally traps a slower unfolding WT molecule. The mutant population rapidly self-aggregates before much WT protein is depleted. Subsequently, WT protein self-aggregates at its normal rate. However, the continual production of mutant p53 in a cancer cell would gradually trap more and more WT and other proteins, accounting for the observations of coaggregates in vivo. The mechanism corresponds more to trapping by cross-reaction and coaggregation rather than classical seeding and growth.


Asunto(s)
Agregado de Proteínas , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Benzotiazoles , Simulación por Computador , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Tiazoles/metabolismo , Factores de Tiempo , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo
19.
J Transl Med ; 15(1): 238, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178939

RESUMEN

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is an aggressive tumor with a high fatality rate. It was recently found that parathyroid hormone-like hormone (PTHLH) was frequently overexpressed in ICC compared with non-tumor tissue. This study aimed to elucidate the underlying mechanisms of PTHLH in ICC development. METHODS: The CCK-8 assay, colony formation assays, flow cytometry and a xenograft model were used to examine the role of PTHLH in ICC cells proliferation. Immunohistochemistry (IHC) and western blot assays were used to detect target proteins. Luciferase reporter, chromatin immunoprecipitation (ChIP) and DNA pull-down assays were used to verify the transcription regulation of activating transcription factor-2 (ATF2). RESULTS: PTHLH was significantly upregulated in ICC compared with adjacent and normal tissues. Upregulation of PTHLH indicated a poor pathological differentiation and intrahepatic metastasis. Functional study demonstrated that PTHLH silencing markedly suppressed ICC cells growth, while specific overexpression of PTHLH has the opposite effect. Mechanistically, secreted PTHLH could promote ICC cell growth by activating extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways, and subsequently upregulated ATF2 and cyclinD1 expression. Further study found that the promoter activity of PTHLH were negatively regulated by ATF2, indicating that a negative feedback loop exists. CONCLUSIONS: Our findings demonstrated that the ICC-secreted PTHLH plays a characteristic growth-promoting role through activating the canonical ERK/JNK-ATF2-cyclinD1 signaling pathways in ICC development. We identified a negative feedback loop formed by ATF2 and PTHLH. In this study, we explored the therapeutic implication for ICC patients.


Asunto(s)
Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Factor de Transcripción Activador 2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Comunicación Autocrina/fisiología , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Colangiocarcinoma/genética , Ciclina D1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Síndromes Paraneoplásicos Endocrinos/genética , Síndromes Paraneoplásicos Endocrinos/metabolismo , Síndromes Paraneoplásicos Endocrinos/patología , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/fisiología , Transducción de Señal/efectos de los fármacos
20.
J Cell Physiol ; 235(5): 4980, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32048739
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA