Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Exp Bot ; 75(5): 1314-1330, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069660

RESUMEN

Sphingolipids are membrane lipids and play critical roles in signal transduction. Ceramides are central components of sphingolipid metabolism that are involved in cell death. However, the mechanism of ceramides regulating cell death in plants remains unclear. Here, we found that ceramides accumulated in mitochondria of accelerated cell death 5 mutant (acd5), and expression of mitochondrion-localized ceramide kinase (ACD5) suppressed mitochondrial ceramide accumulation and the acd5 cell death phenotype. Using immuno-electron microscopy, we observed hyperaccumulation of ceramides in acer acd5 double mutants, which are characterized by mutations in both ACER (alkaline ceramidase) and ACD5 genes. The results confirmed that plants with specific ceramide accumulation exhibited localization of ceramides to mitochondria, resulting in an increase in mitochondrial reactive oxygen species production. Interestingly, when compared with the wild type, autophagy-deficient mutants showed stronger resistance to ceramide-induced cell death. Lipid profiling analysis demonstrated that plants with ceramide accumulation exhibited a significant increase in phosphatidylethanolamine levels. Furthermore, exogenous ceramide treatment or endogenous ceramide accumulation induces autophagy. When exposed to exogenous ceramides, an increase in the level of the autophagy-specific ubiquitin-like protein, ATG8e, associated with mitochondria, where it directly bound to ceramides. Taken together, we propose that the accumulation of ceramides in mitochondria can induce cell death by regulating autophagy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ceramidas/metabolismo , Ceramidas/farmacología , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Autofagia , Muerte Celular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant J ; 109(6): 1427-1440, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919775

RESUMEN

Sphingolipids, a class of bioactive lipids, play a critical role in signal transduction. Ceramides, which are central components of sphingolipid metabolism, are involved in plant development and defense. However, the mechanistic link between ceramides and downstream signaling remains unclear. Here, the mutation of alkaline ceramidase in a ceramide kinase mutant acd5 resulted in spontaneous programmed cell death early in development and was accompanied by ceramide accumulation, while other types of sphingolipids, such as long chain base, glucosylceramide, and glycosyl inositol phosphorylceramide, remained at the same level as the wild-type plants. Analysis of the transcriptome indicated that genes related to the salicylic acid (SA) pathway and oxidative stress pathway were induced dramatically in acer acd5 plants. Comparison of the level of reactive oxygen species (ROS), SA, and ceramides in the wild-type and acer acd5 plants at different developmental stages indicated that the acer acd5 mutant exhibited constitutive activation of SA and ROS signaling, which occurred simultaneously with the alteration of ceramides. Overexpressing NahG in the acer acd5 mutant could completely suppress its cell death and ceramide accumulation, while benzo-(1,2,3)-thiadiazole-7-carbothioc acid S-methyl ester treatment restored its phenotype again. Moreover, we found that the plasma membrane of acer acd5 mutant was the main site of ROS production. Ceramides accumulated in the plasma membrane of acer acd5, directly binding and activating the NADPH oxidase RbohD and promoting hydrogen peroxide generation and SA- or defense-related gene activation. Our data illustrated that ceramides play an essential role in plant defense.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidas/metabolismo , Mutación , Ácido Salicílico/metabolismo , Esfingolípidos/metabolismo
3.
New Phytol ; 240(3): 1134-1148, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606093

RESUMEN

Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Orosomucoide/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esfingolípidos/metabolismo , Ceramidas/metabolismo , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Bioorg Chem ; 133: 106407, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758275

RESUMEN

(±)-Yanhusuomide A (1), a novel enantiomeric pair of ornithine-fused benzylisoquinoline, were characterized from the dried tubers of Corydalis yanhusuo, along with a biogenetically related intermediate oblongine (2). Yanhusuomide A features an unprecedented skeleton based on a benzylisoquinoline coupled with an ornithine derivative to form a rare 5,6-dihydro-4H-pyrido[3,4,5-de]quinazoline motif. Plausible biosynthetic pathway of 1 was proposed, and (±)-yanhusuomide A (1) presented potential inhibitory bioactivity against acetylcholinesterase (AChE) with IC50 = 14.07 ± 2.38 µM. The simulation of molecular docking displayed that 1 generated strong interaction with Asp-74 and Trp-86 residues of AChE through attractive charge of the quaternary nitrogen.


Asunto(s)
Bencilisoquinolinas , Corydalis , Acetilcolinesterasa , Bencilisoquinolinas/química , Corydalis/química , Simulación del Acoplamiento Molecular , Tubérculos de la Planta/química
5.
Zhongguo Zhong Yao Za Zhi ; 48(3): 614-624, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36872224

RESUMEN

Chronic heart failure(CHF) is a series of clinical syndromes in which various heart diseases progress to their end stage. Its morbidity and mortality are increasing year by year, which seriously threatens people's life and health. The diseases causing CHF are complex and varied, such as coronary heart disease, hypertension, diabetes, cardiomyopathy and so on. It is of great significance to establish animal models of CHF according to different etiologies to explore the pathogenesis of CHF and develop drugs to prevent and treat CHF induced by different diseases. Therefore, based on the classification of the etiology of CHF, this paper summarizes the animal models of CHF widely used in recent 10 years, and the application of these animal models in traditional Chinese medicine(TCM) research, in order to provide ideas and strategies for studying the pathogenesis and treatment of CHF, and provide ideas for TCM modernization research.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Animales , Medicina Tradicional China , Enfermedad Crónica , Modelos Animales
6.
J Nat Prod ; 85(1): 248-255, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34978193

RESUMEN

Seco and nor-seco isodhilarane-type meroterpenoids (SIMs and NSIMs) are mainly found in Penicillium fungi and have been characterized by highly congested polycyclic skeletons and a broad range of bioactivities. However, the literature reports inconsistent configuration assignments for some SIMs and NSIMs, due to their complex polycyclic systems and multichiral centers. Herein, we described eight SIMs and NSIMs isolated from the EtOAc extract of Penicillium purpurogenum, which led to the configuration revisions of purpurogenolide C (1a), berkeleyacetal B (2a), chrysogenolide F (3a), and berkeleyacetal C (4a) as compounds 1-4, respectively. Furthermore, extensive re-evaluation of the experimental and computational 13C NMR chemical shifts of the reported 39 SIMs and NSIMs provided an empirical approach for determining the C-9 relative configuration, according to the 13C NMR chemical shifts of C-9, which contributed to the configuration revisions of another three SIMs (5a and 6a) and NSIMs (7a), denoted as compounds 5-7, respectively. Biological assays indicated that compound 3 exhibited cytotoxic activity against HepG2 and A549 cell lines with IC50 values of 5.58 and 6.80 µM, respectively. Compounds 2-4, 8, 9, and 32 showed moderate hepatoprotective activity at 10 µM in the APAP-induced HepG2 cell injury model.


Asunto(s)
Penicillium/química , Terpenos/farmacología , Células A549 , Espectroscopía de Resonancia Magnética con Carbono-13 , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Fermentación , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Terpenos/química
7.
Chem Biodivers ; 19(7): e202200403, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35596060

RESUMEN

Two new nor-seco isodhilarane meroterpenoids (NSIMs), purpurogenolides F (1) and G (2), along with three known meroterpenoid analogs (3-5), were isolated from the cultures of an endophytic fungus, Penicillium purpurogenum. Structures and absolute configurations of the new NSIMs were determined based on extensive spectroscopic data analyses, including HR-ESI-MS, UV, IR, NMR chemical shift calculations together with DP4+ probability analysis, as well as ECD calculations. All the isolated meroterpenoids were assessed for their anti-inflammatory activities, and compound 4 exhibited moderate inhibitory activity against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells with an IC50 value of 20.85±2.31 µM.


Asunto(s)
Penicillium , Talaromyces , Animales , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Penicillium/química , Células RAW 264.7
8.
J Asian Nat Prod Res ; 24(11): 1086-1092, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35852111

RESUMEN

A new polyketide derivative containing a 3-hydroxydecanoic acid ester moiety, penicipurate A (1), was purified from the solid cultures of the fungus Penicillium purpurogenum, a fungal strain endophytic in the leaves of Edgeworthia chrysantha. The structure of 1 was established by spectroscopic methods, including UV, IR, HRESIMS, 1D, and 2D NMR and 13C NMR chemical shifts calculations coupled with DP4+ analysis, as well as the chemical degradation method. Compound 1 showed moderate inhibitory activity against pancreatic lipase (PL) with an IC50 value of 9.61 ± 1.42 µM.


Asunto(s)
Penicillium , Policétidos , Talaromyces , Policétidos/farmacología , Policétidos/química , Penicillium/química , Estructura Molecular
9.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1705-1729, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35534243

RESUMEN

The traditional Chinese medicine(TCM) contains very complex constituents. Besides the major constituents, there are a large number of unclear trace constituents with novel skeletons and potent bioactivities, which have been regarded as one of the important therapeutic substances and the great resources of innovative drugs derived from TCM. The present review highlighted that the development of the trace therapeutic substances of TCM is closely depends on the advanced technologies for their identification, isolation, structure elucidation, and bioactivity evaluation. Additionally, this paper reviewed the novel trace compounds derived from Chinese herbal medicines which have been published in Organic Letters during 2001-2021, and summarized the important licensed drugs originated from the trace therapeutic substances and the discovery and development of trace therapeutic substances of 8 kinds of Chinese herbal medicines. This review provides references for the research and development of TCM therapeutic substances and innovative drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
10.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4565-4573, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36164861

RESUMEN

The pharmacodynamic substances of traditional Chinese medicine(TCM) are the basis for the research of TCM and the development of innovative drugs. However, the lack of clarity of targets and molecular mechanisms is the bottleneck problem that restricts the research of pharmacodynamic substances of TCM. Bioactive components are the material basis of the efficacy of TCM, which exert activity by regulating the corresponding targets. Therefore, it is very important to identify the targets of the bioactive components to elucidate the pharmacological mechanism of TCM. Proteins are the most important drug targets, and study of the interaction between the proteins and bioactive components of TCM plays a key role in the development of pharmacological mechanism of TCM. In recent years, the main techniques for detecting the interaction between the bioactive components and proteins include surface plasmon resonance, fluorescence resonance energy transfer, bio-layer interference, molecular docking, proteome chip, target fishing, target mutant, and protein crystallization techniques, etc. This review summarized the biological target detection techniques and their applications in locating the targets of the bioactive components in TCM in the last decade, and this paper will provide useful strategies to elucidate the pharmacological mechanisms of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular , Proteoma
11.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2837-2842, 2021 Jun.
Artículo en Zh | MEDLINE | ID: mdl-34296583

RESUMEN

A new phenolic acid ester, 4'-hydroxyphenylethyl 4,8(R)-dihydroxyphenylpropionate(1), was isolated from an endophytic fungus Colletotrichum capsici of Paeonia lactiflora roots, along with eight known phenolic derivatives, tyrosol(2), 2-(4-hydroxyphenyl) ethyl acetate(3), methyl p-hydroxyphenylacetate(4), methyl m-hydroxyphenylacetate(5), 4-(4-hydroxyphene-thoxy)-4-oxobutanoic acid(6), 4-hydroxyphenethyl methyl succinate(7), trichodenol B(8) and 4-hydroxyphenethyl 2-(4-hydroxyphenyl) acetate(9). Their structures were identified by a combination of high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), nuclear magnetic resonance(NMR) spectroscopy, ultraviolet(UV) spectroscopy and electronic circular dichroism(ECD) spectroscopy. Compounds 2-9 were isolated from this fungus for the first time.


Asunto(s)
Colletotrichum , Paeonia , Ésteres , Hidroxibenzoatos
12.
Zhongguo Zhong Yao Za Zhi ; 46(3): 638-644, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645031

RESUMEN

According to human carboxylesterase 2(hCE2) inhibitors reported in the literature, the pharmacophore model of hCE2 inhibitors was developed using HipHop module in Discovery Studio 2016. The optimized pharmacophore model, which was validated by test set, contained two hydrophobic, one hydrogen bond acceptor, and one aromatic ring features. Using the pharmacophore model established, 5 potential hCE2 inhibitors(CS-1,CS-2,CS-3,CS-6 and CS-8) were screened from 20 compounds isolated from the roots of Paeonia lactiflora, which were further confirmed in vitro, with the IC_(50) values of 5.04, 5.21, 5.95, 6.64 and 7.94 µmol·L~(-1), respectively. The results demonstrated that the pharmacophore model exerted excellent forecasting ability with high precision, which could be applied to screen novel hCE2 inhibitors from Chinese medicinal materials.


Asunto(s)
Carboxilesterasa , Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
13.
J Nat Prod ; 83(2): 489-496, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32058719

RESUMEN

Six new pairs of isoquinoline alkaloid enantiomers, designated as yanhusanines A-F (1-6), were isolated from an aqueous extract of Corydalis yanhusuo tubers. The structures of these enantiomers were elucidated via physicochemical analysis and a variety of spectroscopic methods. All compounds were resolved into their enantiomers via chiral-phase HPLC, and their configurations were determined by DP4+ NMR calculation methods, specific rotations, and comparison of experimental and calculated ECD spectra. Compounds 1-6 bear a rare 9-methyl moiety, and compound 1 possesses a rare 1-oxa-6-azaspiro[4.5]decane core containing an N-CHO group. Compounds (+)-2, (-)-2, (+)-4, (-)-4, (+)-5, (-)-5, (+)-6, and (-)-6 exhibited selective inhibitory activities against human carboxylesterase (hCE2), in the IC50 value range of 2.0-13.2 µM.


Asunto(s)
Alcaloides/química , Isoquinolinas/química , Alcaloides/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Corydalis/química , Humanos , Isoquinolinas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular
14.
J Asian Nat Prod Res ; 22(3): 233-240, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31833397

RESUMEN

Three new polyketides including two benzophenone derivatives, penibenzones A and B (1 and 2), and a new phthalide derivative, penibenzone C (3), along with six known compounds, were isolated from the solid-substrate cultures of the endophytic fungus Penicillium purpurogenum IMM003. Their structures were elucidated on the basis of spectroscopic data (UV, IR, HRESIMS, 1D and 2D NMR). All compounds were evaluated for inhibitory activity against pancreatic lipase, but none of them displayed activity.[Formula: see text].


Asunto(s)
Penicillium , Policétidos , Lipasa , Espectroscopía de Resonancia Magnética , Estructura Molecular
15.
J Integr Plant Biol ; 62(4): 421-432, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31001922

RESUMEN

The formation of lateral branches has an important and fundamental contribution to the remarkable developmental plasticity of plants, which allows plants to alter their architecture to adapt to the challenging environment conditions. The Gibberellin (GA) phytohormones have been known to regulate the outgrowth of axillary meristems (AMs), but the specific molecular mechanisms remain unclear. Here we show that DELLA proteins regulate axillary bud formation by interacting and regulating the DNA-binding ability of SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 9 (SPL9), a microRNA156-targeted squamosa promoter binding protein-like transcription factor. SPL9 participates in the initial regulation of axillary buds by repressing the expression of LATERAL SUPPRESSOR (LAS), a key regulator in the initiation of AMs, and LAS contributes to the specific expression pattern of the GA deactivation enzyme GA2ox4, which is specifically expressed in the axils of leaves to form a low-GA cell niche in this anatomical region. Nevertheless, increasing GA levels in leaf axils by ectopically expressing the GA-biosynthesis enzyme GA20ox2 significantly impaired axillary meristem initiation. Our study demonstrates that DELLA-SPL9-LAS-GA2ox4 defines a core feedback regulatory module that spatially pattern GA content in the leaf axil and precisely control the axillary bud formation in different spatial and temporal.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Giberelinas/metabolismo , Transactivadores/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Hojas de la Planta/metabolismo , Unión Proteica , Transcripción Genética
16.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5840-5865, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496125

RESUMEN

Pain is a complex, unpleasant feeling and emotional experience associated with actual or potential tissue damage, and manifests itself in certain autonomous psychological and behavioral responses. The commonly used opioid and non-steroidal anti-inflammatory analgesics(NSAIDs) may cause adverse reactions to the kidney, liver, cardiovascular or gastrointestinal system and cause problems of drug abuse. Therefore, it is necessary to study new analgesic drugs with less side effects and significant analgesic effects. A variety of natural products derived from terrestrial plants, microorganisms, marine organisms and fungi have been an important source of clinical medicines and provide an inexhaustible resource for the development and innovation of modern medicines. Therefore, this paper mainly reviews the natural non-alkaloids with analgesic activity in order to provide reference for the research and development of analgesic drugs derived from natural products.


Asunto(s)
Analgésicos , Productos Biológicos , Analgésicos/uso terapéutico , Analgésicos Opioides/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Productos Biológicos/uso terapéutico , Humanos , Dolor/tratamiento farmacológico
17.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5877-5883, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496127

RESUMEN

Chemical investigation on the constituents of the ethyl acetate soluble extraction of Litsea cubeba has resulted in the isolation and structure elucidation of thirty compounds, including one sesquiterpene(1), four monoterpenes(2-5), two γ-butyrolactone derivatives(6 and 7), seven tyramine derivatives(8-14), fifteen aromatic compounds(15-29), and one pyrone derivative(30) via various chromatographic techniques and spectroscopic data analysis(MS, IR, 1 D and 2 D NMR). Compounds 1-7, 13 and 14 were obtained from the genus Litsea for the first time.


Asunto(s)
Litsea , Sesquiterpenos , Acetatos , Monoterpenos
18.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5829-5839, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496124

RESUMEN

Pain is a protective defense response of the body to harmful stimuli. Long-term pain not only seriously affects the body of the patient and brings great pain to the patient, but also brings huge economic burden to the patient's family and society. It has become one of the most serious problems affecting human health. At present, opioids and non-steroidal anti-inflammatory drugs(NSAIDs) are commonly used as painkillers, but they tend to cause a variety of adverse reactions or risk of addiction. To find and develop new analgesic drugs, which are safer and more effective, has become the hot spot and difficulty in medical research. A variety of alkaloids derived from terrestrial plants, microorganisms, marine organisms and fungi have been an important source of clinical analgesic medicines. Various alkaloids have been proved to have good analgesic effects, such as morphine and the related to opioids, the main analgesic active components from Corydalis Rhizoma and Aconiti Lateralis Radix Praeparata. Here we summarized the research progress of natural alkaloids with analgesic activity, in order to provide reference for the research and development of analgesic drugs based on natural products.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Analgésicos , Humanos , Rizoma
19.
New Phytol ; 224(1): 188-201, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31230359

RESUMEN

Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula × Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.


Asunto(s)
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Haz Vascular de Plantas/fisiología , Populus/fisiología , Regeneración/fisiología , Árboles/fisiología , Cámbium/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Modelos Biológicos , Floema/fisiología , Populus/genética , Árboles/genética
20.
Adv Exp Med Biol ; 1209: 23-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728863

RESUMEN

The highly conserved catabolic process of autophagy delivers unwanted proteins or damaged organelles to vacuoles for degradation and recycling. This is essential for the regulation of cellular homeostasis, stress adaptation, and programmed cell death in eukaryotes. In particular, emerging evidence indicates that autophagy plays a multifunctional regulatory role in plant innate immunity during plant-pathogen interactions. In this review, we highlight existing knowledge regarding the involvement of autophagy in plant immunity, mechanisms functioning in the induction of autophagy upon pathogen infection, and possible directions for future research.


Asunto(s)
Autofagia , Inmunidad de la Planta , Homeostasis , Inmunidad de la Planta/inmunología , Vacuolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA