Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209394

RESUMEN

Live virus vaccine (LVV) purification, employing chromatography, can be challenged by low binding capacities and elution yields. Alternatively, processes relying solely on enzymatic digestion steps and size-based membrane separations can be limited by suboptimal reduction of process related impurities and poorly scalable unit operations. Here, we demonstrate that the combination of flowthrough mode chromatography and an ultrafiltration/diafiltration (UF/DF) unit operation delivers a purification process for two different LVV candidates, V590 and Measles, expressed in adherent Vero cells. For V590, chromatography with mixed mode cation exchange resins returned final product yields of ∼50% and logarithmic reduction values (LRVs) of 1.7->3.4 and 2.5-3.0 for host cell DNA (hcDNA) and host cell proteins (HCPs), respectively. For Measles, chromatography with mixed mode anion exchange resins returned final product yields of ∼50% and LRVs of 1.6 and 2.2 for hcDNA and HCPs, respectively. For both V590 and Measles processing, the employed resins cleared a key HCP, fibronectin, which could foul the UF/DF unit operation, and thusly enabling it to further reduce HCPs and to formulate the final LVV products. This integrated purification process utilizes the complementary action of the two unit operations and its applicability across LVVs supports its consideration for their processing.

2.
Anal Chem ; 94(24): 8668-8673, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675206

RESUMEN

Nanoparticle hydrophobicity is a key factor controlling the stability, adhesion, and transport of nanoparticle suspensions. Although a number of approaches have been presented for evaluating nanoparticle hydrophobicity, these methods are difficult to apply to larger nanoparticles and viruses (>100 nm in size) that are of increasing importance in drug delivery and gene therapy. This study investigated the use of a new analytical hydrophobic interaction chromatography method employing a 5.0 µm pore size polyvinylidene fluoride membrane as the stationary-phase in membrane hydrophobic interaction chromatography (MHIC). Experimental data obtained using a series of model proteins were in good agreement with literature values for the hydrophobicity (both experimental and computational). MHIC was then used to evaluate the hydrophobicity of a variety of nanoparticles, including a live attenuated viral vaccine, both in water and in the presence of different surfactants. This new method can be implemented on any liquid chromatography system, run times are typically <20 min, and the experiments avoid the use of organic solvents that could alter the structure of many biological nanoparticles.


Asunto(s)
Nanopartículas , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Solventes/química , Tensoactivos/química
3.
Analyst ; 147(3): 378-386, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34908043

RESUMEN

Adjuvants are commonly employed to enhance the efficacy of a vaccine and thereby increase the resulting immune response in a patient. The activity and effectiveness of emulsion-based adjuvants has been heavily studied throughout pharmaceuticals; however, there exists a lack in research which monitors the formation of a stable emulsion in real time. Process analytical technology (PAT) provides a solution to meet this need. PAT involves the collection of in situ data, thereby providing real time information about the monitored process as well as increasing understanding of that process. Here, three separate PAT tools - optical particle imaging, in situ particle analysis, and Raman spectroscopy - were used to monitor two key steps involved in the formation of a stable emulsion product, emulsification and homogenization, as well as perform a stability assessment. The obtained results provided new insights-particle size decreases during emulsification and homogenization, and molecular changes do not occur during either the emulsification or homogenization steps. Further, the stability assessment indicated that the coarse emulsion product obtained from the emulsification step is stable over the course of 24 hours when mixed. To the best of our knowledge, this is the first report of an analytical methodology for in situ, real time analysis of emulsification and homogenization processes for vaccine adjuvants. Using our proposed analytical methodology, an improved understanding of emulsion-based vaccine adjuvants can now be achieved, ultimately impacting the ability to develop and deliver successful pharmaceuticals.


Asunto(s)
Adyuvantes de Vacunas , Espectrometría Raman , Emulsiones , Humanos , Tamaño de la Partícula
4.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236543

RESUMEN

A systematic method is employed for the design and analysis of a small size eddy current (EC) displacement sensor. Simulations are first performed to determine the optimal winding structure and dimensions of the sensor. A linear-fitting approach is then developed for converting the AC displacement signal of the sensor to a DC signal. Finally, a compensation method is proposed for mitigating the temperature drift of the EC sensor under different working temperatures. The experimental results show that the proposed sensor has a sensitivity of approximately 3 µm, a working temperature range of 25-55 °C, and a linearity of ±1.025%.

5.
Biotechnol Bioeng ; 118(1): 106-115, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880898

RESUMEN

There is growing interest in the development of new vaccines based on live-attenuated viruses (LAVs) and virus-like particles. The large size of these vaccines, typically 100-400 nm, significantly complicates the use of sterile filtration. The objectives of this study are to examine the performance of several commercial sterile filters for filtration of a cytomegalovirus vaccine candidate (referred to as the LAV) and to develop and evaluate the use of a model nanoparticle suspension to perform a more quantitative assessment. Data obtained with a mixture of 200- and 300-nm fluorescent particles provided yield and pressure profiles that captured the behavior of the viral vaccine. This included the excellent performance of the Sartorius Sartobran P filter, which provided greater than 80% yield of both the vaccine and model particles even though the average particle size was more than 250 nm. The particle yield for the Sartobran P was independent of filtrate flux above 200 L/m2 /h, but increased with increasing particle concentration, varying from less than 10% at concentrations around 107 particles/ml to more than 80% at concentrations above 1010 particles/ml due to saturation of particle capture/binding sites within the filter. These results provide important insights into the factors controlling transmission and fouling during sterile filtration of large vaccine products.


Asunto(s)
Nanopartículas/química , Vacunas Virales , Virus , Tamaño de la Partícula , Ultrafiltración , Vacunas Atenuadas/química , Vacunas Atenuadas/aislamiento & purificación , Vacunas Virales/química , Vacunas Virales/aislamiento & purificación , Virus/química , Virus/aislamiento & purificación
6.
J Chromatogr A ; 1717: 464670, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38310705

RESUMEN

Increased demand for mRNA-based therapeutics and improved in vitro transcription (IVT) yields have challenged the mRNA purification platform. Hybridization-affinity chromatography with an immobilized oligo-deoxythymidilic acid (oligodT) ligand is often used to capture mRNA through base pairing with the polyadenylated tail. Commercially available oligodT matrices include perfusive cross-linked poly(styrene-divinylbenzene) 50 µm POROS™ chromatography resin beads and convective polymethacrylate CIMmultus® monolithic columns consisting of 2 µm interconnected channels. POROS™ columns may be limited by poor mass transfer for larger mRNAs and slow flowrates, while monoliths can operate at higher flowrates but are limited by modest binding capacity. To enable both high flowrates and binding capacity for mRNA of all lengths, prototype chromatography media was developed by Cytiva using oligodT immobilized electrospun cellulose nanofibers (Fibro™) with a 0.3-0.4 µm pore size. In this work, four polyadenylated mRNAs ranging from ∼1900-4300 nucleotides were used to compare the dynamic binding capacity (DBC) of Fibro™, POROS® and CIMmultus® columns as a function of residence time and binding buffer compositions. Fibro™ improved the DBC ∼2-4-fold higher than CIMmultus® and ∼2-13-fold higher than POROS™ across all residence times, mRNA length, and binding matrix compositions tested. CIMmultus® DBC was least dependent on residence time and mRNA size, while both Fibro™ and POROS™ DBC increased at slower flowrates and with shorter mRNA. Surprisingly, inverse size exclusion (ISE) experiments showed that POROS™ was not limited by diffusion and POROS™ along with CIMmultus® demonstrate higher mRNA permeation however the Fibro™ prototype is not in the final configuration. Lastly, IVT reaction products were subjected to purification and oligodT elution product yield, quality, and purity were consistent across the three matrices investigated. These results highlight the benefits of high DBC and equivalent product profiles offered by the oligodT Fibro™ prototype compared to commercially available oligodT media.


Asunto(s)
Nanofibras , Polímeros , Polímeros/química , ARN Mensajero , Cromatografía de Afinidad/métodos , Celulosa
7.
Biotechnol Prog ; 39(1): e3300, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36101005

RESUMEN

This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.


Asunto(s)
Albúmina Sérica Bovina , Cloruro de Sodio , Cloruro de Sodio/química , Adsorción , Albúmina Sérica Bovina/química , Polímeros/química , Polietilenglicoles
8.
Bioanalysis ; 15(9): 493-501, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37141441

RESUMEN

Aims: Process analytical technology (PAT) is increasingly being adopted within the pharmaceutical industry to build quality into a process. Development of PAT that provides real-time in situ analysis of critical quality attributes are highly desirable for rapid, improved process development. Conjugation of CRM-197 with pneumococcal polysaccharides to produce a desired pneumococcal conjugate vaccine is a significantly intricate process that can tremendously benefit from real-time process monitoring. Methods: In this work, a fluorescence-based PAT methodology is described to elucidate CRM-197-polysacharide conjugation kinetics in real time. Results & conclusion: In this work, a fluorescence-based PAT methodology is described to elucidate CRM-197-polysacharide conjugation kinetics in real time.


Asunto(s)
Anticuerpos Antibacterianos , Polisacáridos , Espectrometría de Fluorescencia , Proteínas Bacterianas
9.
J Chromatogr A ; 1676: 463259, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35759911

RESUMEN

Members of the enterovirus genus are promising oncolytic agents. Their morphogenesis involves the generation of both genome-packed infectious capsids and empty capsids. The latter are typically considered as an impurity in need of removal from the final product. The separation of empty and full capsids can take place with centrifugation methods, which are of low throughput and poorly scalable, or scalable chromatographic processes, which typically require peak cutting and a significant trade-off between purity and yield. Here we demonstrate the application of packed bed cation exchange (CEX) column chromatography for the separation of empty capsids from infectious virions for a prototype strain of Coxsackievirus A21. This separation was developed using high throughput chromatography techniques and scaled up as a bind and elute polishing step. The separation was robust over a wide range of operating conditions and returned highly resolved empty and full capsids. The CEX step could be operated in bind and elute or flowthrough mode with similar selectivity and returned yields greater than 70% for full mature virus particles. Similar performance was also achieved using a selection of other bead based CEX chromatography media, demonstrating general applicability of this type of chromatography for Coxsackievirus A21 purification. These results highlight the wide applicability and excellent performance of CEX chromatography for the purification of enteroviruses, such as Coxsackievirus A21.


Asunto(s)
Cápside , Enterovirus , Antígenos Virales/análisis , Cápside/química , Cápside/metabolismo , Cationes/química , Cromatografía por Intercambio Iónico/métodos , Virión
10.
J Pharm Sci ; 111(7): 1887-1895, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35378117

RESUMEN

Recent studies of sterile filtration of a Live Attenuated Virus (LAV) demonstrated that the Sartobran P sterile filter provided 80% yield of a LAV that was 100 - 400 nm in size, raising questions about the effectiveness of this filter in retaining the standard challenge bacterium, Brevundimonas diminuta. This study evaluated the retention of B. diminuta by the Sartobran P over a range of conditions appropriate for LAV filtration. The B. diminuta were characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and scanning electron microscopy. The Sartobran P showed complete retention of B. diminuta under all conditions, even in the presence of additives like sucrose, surfactants, and high salt that have previously been hypothesized to increase the risk of bacterial breakthrough. The size of B. diminuta decreased when incubated in the nutrient poor media required by the ASTM challenge test. The addition of sucrose caused a further reduction in size as measured by NTA, although this was due to an increase in cell motility. There was no evidence of bacterial breakthrough at high loadings of either the LAV or B. diminuta, further demonstrating the effectiveness of the Sartobran P for sterile filtration of large viral vaccines.


Asunto(s)
Filtración , Esterilización , Bacterias , Sacarosa , Vacunas Atenuadas
11.
Int J Pharm ; 611: 121324, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34848366

RESUMEN

The use of protection groups to shield a functional group during a synthesis is employed throughout many reactions and organic syntheses. The role of a protection group can be vital to the success of a reaction, as well as increase reaction yield and selectivity. Although much work has been done to investigate the addition of a protection group, the removal of the protection group is just as important - however, there is a lack of methods employed within the literature for monitoring the removal of a protection group in real time. In this work, the process of removing, or deprotecting, a ketal protecting group is investigated. Process analytical technology tools are incorporated for in situ analysis of the deprotection reaction of a small molecule model compound. Specifically, Raman spectroscopy and Fourier transform infrared spectroscopy show that characteristic bands can be used to track the decrease of the reactant and the increase of the expected products over time. To the best of our knowledge, this is the first report of process analytical technology being used to monitor a ketal deprotection reaction in real time. This information can be capitalized on in the future for understanding and optimizing pharmaceutically-relevant deprotection processes and downstream reactions.

12.
Biotechnol J ; 17(10): e2200191, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35771570

RESUMEN

During the development of a SARS-CoV-2 vaccine candidate, at the height of the COVID-19 pandemic, raw materials shortages, including chromatography resins, necessitated the determination of a cleaning in place (CIP) strategy for a multimodal core-shell resin both rapidly and efficiently. Here, the deployment of high throughput (HT) techniques to screen CIP conditions for cleaning Capto Core 700 resin exposed to clarified cell culture harvest (CCCH) of a SARS-CoV-2 vaccine candidate produced in Vero adherent cell culture are described. The best performing conditions, comprised of 30% n-propanol and ≥0.75 N NaOH, were deployed in cycling experiments, completed with miniature chromatography columns, to demonstrate their effectiveness. The success of the CIP strategy was ultimately verified at the laboratory scale. Here, its impact was assessed across the entire purification process which also included an ultrafiltration/diafiltration step. It is shown that the implementation of the CIP strategy enabled the re-use of the Capto Core 700 resin for up to 10 cycles without any negative impact on the purified product. Hence, the strategic combination of HT and laboratory-scale experiments can lead rapidly to robust CIP procedures, even for a challenging to clean resin, and thus help to overcome supply shortages.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , 1-Propanol , COVID-19/prevención & control , Humanos , Pandemias , Regeneración , SARS-CoV-2 , Hidróxido de Sodio
13.
J Pharm Biomed Anal ; 209: 114533, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34929570

RESUMEN

Pneumococcal conjugate vaccines (PCVs) are formed by bioconjugation of a carrier protein to the purified capsular polysaccharide (Ps) from multiple serological strains of Streptococcus pneumoniae. The associated bioconjugation chemistry relies on initial selective modifications to the Ps backbone structure. Among these modifications, removal of a ketal functional group, termed deketalization, is one that is important for pharmaceutical PCV production. Herein, we report a process monitoring investigation into the deketalization of a polysaccharide relevant to PCV process development. We have applied process analytical technology (PAT) for in situ process monitoring to study the deketalization reaction in real time. We find that in situ FTIR spectroscopy elucidates multiple classes of reaction kinetics, one of which correlates strongly with the deketalization reaction of interest. This PAT approach to real time reaction monitoring offers the possibility of improved process monitoring in the pharmaceutical production of PCVs. To our knowledge, this report represents the first PAT investigation into Ps deketalization. Our findings suggest that broader application of PAT to the chemical modifications associated with PCV bioconjugation, as well as other pharmaceutically relevant bioconjugation processes, carries the power to enhance process understanding, control, and efficiency through real time process monitoring.


Asunto(s)
Vacunas Neumococicas , Streptococcus pneumoniae , Proteínas Portadoras , Polisacáridos , Vacunas Conjugadas
14.
J Chromatogr A ; 1651: 462314, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34144396

RESUMEN

Structural and functional characteristics of the two core-shell resins Capto™ Core 400 and 700, which are useful for the flow-through purification of bioparticles such as viruses, viral vectors, and vaccines, are compared using bovine serum albumin (BSA) and thyroglobulin (Tg) as models for small and large protein contaminants. Both resins are agarose-based and contain an adsorbing core surrounded by an inert shell. Although shell thicknesses are comparable (3.6 and 4.2 µm for Capto Core 400 and 700, respectively), the two resins differ substantially in pore size (pore radii of 19 and 50 nm, respectively). Because of the smaller pores and higher surface area, the BSA binding capacity of Capto Core 400 is approximately double that of Capto Core 700. However, for the much larger Tg, the attainable capacity is substantially larger for Capto Core 700. Mass transfer in both resins is affected by diffusional resistances through the shell and within the adsorbing core. For BSA, core and shell effective pore diffusivities are about 0.25 × 10-7 and 0.6 × 10-7 cm2/s, respectively, for Capto Core 400, and about 1.6 × 10-7 and 2.6 × 10-7 cm2/s, respectively, for Capto Core 700. These values decrease dramatically for Tg to 0.022 × 10-7 and 0.088 × 10-7 cm2/s and to 0.13 × 10-7 and 0.59 × 10-7 cm2/s for Capto Core 400 and 700, respectively. Adsorbed Tg further hinders diffusion of BSA in both resins. Column measurements show that, despite the higher static capacity of Capto Core 400 for BSA, the dynamic binding capacity is greater for Capto Core 700 as a result of its faster kinetics. However, some of this advantage is lost if the feed is a mixture of BSA and Tg since, in this case, Tg binding leads to greater diffusional hindrance for BSA.


Asunto(s)
Resinas Sintéticas/química , Albúmina Sérica Bovina/aislamiento & purificación , Tiroglobulina/aislamiento & purificación , Adsorción , Animales , Bovinos , Dextranos/química , Difusión , Glucosa/química , Cinética , Microscopía Confocal , Tamaño de la Partícula
15.
PDA J Pharm Sci Technol ; 72(2): 149-162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29343619

RESUMEN

Aluminum-containing adjuvants have been widely used in vaccine formulations to safely and effectively potentiate the immune response. The examination of the extent of antigen adsorption to aluminum adjuvant is always evaluated during the development of aluminum adjuvant containing vaccines. A rapid, automated, high-throughput assay was developed to measure antigen adsorption in a 96-well plate format using a TECAN Freedom EVO® (TECAN). The antigen adsorption levels at a constant adjuvant concentration for each sample were accurately measured at 12 antigen/adjuvant (w/w) formulation ratios. These measurements were done at aluminum adjuvant concentrations similar to normal vaccine formulations, unlike previous non-automated and automated adjuvant adsorption studies. Two high-sensitivity analytical methods were used to detect the non-absorbed antigens. The antigen-to-adjuvant adsorption curves were fit to a simple Langmuir adsorption model for quantitatively analyzing the antigen to the adjuvant adsorption level and strength. The interaction of two model antigens, bovine serum albumin and lysozyme, with three types of aluminum adjuvant, were quantitatively analyzed in this report. Automated, high-throughput methodologies combined with sensitive analytical methods are useful for accelerating practical vaccine formulation development.LAY ABSTRACT: Vaccines are probably the most effective public health method to prevent epidemics of many infectious diseases. Many of the most effective vaccines contain aluminum adjuvant. This report describes novel technology that can be used to better optimize the efficacy and stability of aluminum adjuvant-containing vaccines.


Asunto(s)
Adyuvantes Inmunológicos/química , Compuestos de Aluminio/química , Antígenos/química , Ensayos Analíticos de Alto Rendimiento , Tecnología Farmacéutica/métodos , Vacunas/química , Adyuvantes Inmunológicos/metabolismo , Adsorción , Compuestos de Aluminio/metabolismo , Hidróxido de Aluminio/química , Hidróxido de Aluminio/metabolismo , Antígenos/metabolismo , Automatización , Composición de Medicamentos , Muramidasa/química , Muramidasa/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Propiedades de Superficie , Vacunas/metabolismo
16.
PLoS One ; 12(1): e0170640, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125650

RESUMEN

Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.


Asunto(s)
Toxinas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Infecciones por Clostridium/prevención & control , Enterotoxinas/genética , Animales , Toxinas Bacterianas/toxicidad , Vacunas Bacterianas/genética , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/genética , Infecciones por Clostridium/microbiología , Cricetinae , Modelos Animales de Enfermedad , Enterotoxinas/toxicidad , Humanos , Macaca mulatta/microbiología , Mesocricetus/microbiología
17.
Vaccine ; 34(10): 1319-23, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26614590

RESUMEN

Clostridium difficile is the leading cause of hospital-acquired diarrhea, also known as C. difficile associated diarrhea. The two major toxins, toxin A and toxin B are produced by most C. difficile bacteria, but some strains, such as BI/NAP1/027 isolates, produce a third toxin called binary toxin. The precise biological role of binary toxin is not clear but it has been shown to be a cytotoxin for Vero cells. We evaluated the toxicity of these toxins in mice and hamsters and found that binary toxin causes death in both animals similar to toxins A and B. Furthermore, immunization of mice with mutant toxoids of all three toxins provided protection upon challenge with native toxins. These results support the concept that binary toxin contributes to the pathogenicity of C. difficile and provide a method for monitoring the toxicity of binary toxin components in vaccines.


Asunto(s)
Toxinas Bacterianas/toxicidad , Clostridioides difficile/patogenicidad , Toxoides/toxicidad , ADP Ribosa Transferasas/toxicidad , Animales , Proteínas Bacterianas/toxicidad , Cricetinae , Enterotoxinas/toxicidad , Femenino , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA